234 resultados para ANTIFUNGAL SUSCEPTIBILITY
Resumo:
INTRODUCTION: In HIV-infected patients, colonization of the oral cavity by potential pathogenic yeast may lead to development of systemic fungemia. We evaluated the prevalence of yeast in the oral cavity of Brazilian HIV-positive patients and verified whether or not the species characterized were enzymatically active. Furthermore, the species identified were tested for their susceptibility to antifungal treatment. METHODS: Patient saliva and oropharyngeal candidiasis samples were collected from 60 seropositive HIV patients and identified by the API20C system. Enzymatic activity was evaluated by the production of proteinase and phospholipase. Susceptibility to antifungal treatments were determined using the broth microdilution method. RESULTS: the most commonly isolated species were C. albicans (51.56%) followed by non-albicans Candida species (43.73%), Trichosporon mucoides (3.12%) and Kodamaea ohmeri (1.56%). Oral colonization by association of different species was observed in 42% of the patients. Enzymatic activity was verified in most of species isolated, except for C. glabrata, C. lusitaniae and C. guilliermondii. Resistance to Fluconazole and Amphotericin B was observed in isolates of C. albicans, C. glabrata, C. parapsilosis, C. krusei, and K. ohmeri. CONCLUSION: HIV-positive patients are orally colonized by single or multiple species of yeast that are occasionally resistant to Fluconazole or Amphotericin B.
Resumo:
This study examined the susceptibility of peritoneal macrophage (PM) from the Neotropical primates: Callithrix jacchus, Callithrix penicillata, Saimiri sciureus, Aotus azarae infulatus and Callimico goeldii to ex vivo Leishmania (L.) infantum chagasi-infection, the etiological agent of American visceral leishmaniasis (AVL), as a screening assay for evaluating the potential of these non-human primates as experimental models for studying AVL. The PM-susceptibility to infection was accessed by the PM-infection index (PMI) at 24, 72 h and by the mean of these rates (FPMI), as well as by the TNF-α, IL-12 (Capture ELISA) and Nitric oxide (NO) responses (Griess method). At 24h, the PMI of A. azarae infulatus (128) was higher than those of C. penicillata (83), C. goeldii (78), S. sciureus (77) and C. jacchus (55). At 72h, there was a significant PMI decrease in four monkeys: A. azarae infulatus (128/37), C. penicillata (83/38), S. sciureus (77/38) and C. jacchus (55/12), with exception of C. goeldii (78/54). The FPMI of A. azarae infulatus (82.5) and C. goeldii (66) were higher than C. jacchus (33.5), but not higher than those of C. penicillata (60.5) and S. sciureus (57.5). The TNF-a response was more regular in those four primates which decreased their PMI at 24/72 h: C. jacchus (145/122 pg/mL), C. penicillata (154/130 pg/mL), S. sciureus (164/104 pg/mL) and A. azarae infulatus (154/104 pg/mL), with exception of C. goeldii (38/83 pg/mL). The IL-12 response was mainly prominent in A. infulatus and C. goeldii which presented the highest FPMI and, the NO response was higher in C. goeldii, mainly at 72 h. These findings strongly suggest that these New World primates have developed a resistant innate immune response mechanism capable of controlling the macrophage intracellular growth of L. (L.) i. chagasi-infection, which do not encourage their use as animal model for studying AVL.
Resumo:
Systemic fungal infections are responsible for high mortality rates. Several species of fungi may be involved, but Candida spp. is the most prevalent. Simvastatin is used to lower cholesterol and also exhibits antifungal action. The aim of this study was to evaluate the synergistic action of simvastatin with fluconazole against strains of Candida spp. Susceptibility testing was performed according to protocol M27-A3, by broth microdilution method and the synergistic effect of simvastatin and fluconazole was calculated based on FICI (Fractional Inhibitory Concentration Index). Eleven strains were evaluated, and simvastatin showed a synergistic effect with fluconazole against 10 (91%) of the Candida spp. strains tested. Simvastatin may be a valuable drug in the treatment of systemic infections caused by Candida spp.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) are now a worldwide problem. Cystic fibrosis (CF) patients are commonly colonized and infected by MRSA. Accurate oxacillin susceptibility testing is mandatory for the adequate management of these patients. We performed a comparison of the accuracy of different tests in CF isolates, including methicillin-susceptible S. aureus and MRSA with different SCCmec types, and using the mecA gene as the gold-standard. The sensitivity and specificity of oxacillin disc, Etest, and oxacillin agar screening plate were 100%. Sensitivity of the cefoxitin disc was 85% and specificity was 100%. For clinically relevant isolates, laboratories may consider the use of a combination of two phenotypic methods.
Resumo:
SUMMARY Inflammation due to Shigella flexneri can cause damage to the colonic mucosa and cell death by necrosis and apoptosis. This bacteria can reach the bloodstream in this way, and the liver through portal veins. Hypoxia is a condition present in many human diseases, and it may induce bacterial translocation from intestinal lumen. We studied the ability of S. flexneri to invade rat hepatocytes and Caco-2 cells both in normoxic and hypoxic microenvironments, as well as morphological and physiological alterations in these cells after infection under hypoxia. We used the primary culture of rat hepatocytes as a model of study. We analyzed the following parameters in normoxic and hypoxic conditions: morphology, cell viability, bacterial recovery and lactate dehydrogenase (LDH) released. The results showed that there were fewer bacteria within the Caco-2 cells than in hepatocytes in normoxic and hypoxic conditions. We observed that the higher the multiplicity of infection (MOI) the greater the bacterial recovery in hepatocytes. The hypoxic condition decreased the bacterial recovery in hepatocytes. The cytotoxicity evaluated by LDH released by cells was significantly higher in cells submitted to hypoxia than normoxia. Caco-2 cells in normoxia released 63% more LDH than hepatocytes. LDH increased 164% when hepatocytes were submitted to hypoxia and just 21% when Caco-2 cells were in the same condition. The apoptosis evaluated by Tunel was significantly higher in cells submitted to hypoxia than normoxia. When comparing hypoxic cells, we obtained more apoptotic hepatocytes than apoptotic Caco-2 cells. Concluding our results contribute to a better knowledge of interactions between studied cells and Shigella flexneri. These data may be useful in the future to define strategies to combat this virulent pathogen.
Resumo:
Objective: This study was designed to determine the frequency and causative agent(s) of urinary tract infections (UTIs) in individuals with symptoms of urinary tract infections in Enugu State of Southeast Nigeria, and to determine the antibiotic susceptibility pattern of microbial agents isolated from urine culture.Methods: The study involved 211 individuals (149 females and 62 males) clinically suspected for UTI. Urine samples were collected by the mid-stream ‘clean catch’ method and tested using standard procedures. Antibiotic susceptibility of the isolated pathogens was tested using the Kirby-Bauer technique according to the Clinical and Laboratory Standards Institute (CLSI) guidelines.Results: Microscopy of centrifuged urine samples showed 16 patients had pyuria while 54 had pus cells. Calcium oxalate crystals were found in 14 samples. Urinalysis performed with urine samples showed 17 had protein; seven were nitrite positive and three had moderate to high glucose concentration. Fifty-four urine samples (36.2%) from females and 12 (19.4%) from males showed significant growth upon culture. Gram stain and biochemical tests identified nine different organisms with Escherichia coli as the most common isolated species. Forty three randomly selected strains were further tested for their susceptibility against a panel of antibiotics. Thirty isolates (81.08%) were resistant to four or more antibiotics with the highest resistance shown by E. coli (76.67%). All the Gram- negative isolates were resistant to Ampicilox, Cefuroxime and Amoxicillin.Conclusion: Urinary tract infections were found more in females in the area under study. As found in other studies, E. coli was the most predominant isolate, although other organisms seem to be on the increase.
Resumo:
Enterococci are increasingly responsible for nosocomial infections worldwide. This study was undertaken to compare the identification and susceptibility profile using an automated MicrosScan system, PCR-based assay and disk diffusion assay of Enterococcus spp. We evaluated 30 clinical isolates of Enterococcus spp. Isolates were identified by MicrosScan system and PCR-based assay. The detection of antibiotic resistance genes (vancomycin, gentamicin, tetracycline and erythromycin) was also determined by PCR. Antimicrobial susceptibilities to vancomycin (30 µg), gentamicin (120 µg), tetracycline (30 µg) and erythromycin (15 µg) were tested by the automated system and disk diffusion method, and were interpreted according to the criteria recommended in CLSI guidelines. Concerning Enterococcus identification the general agreement between data obtained by the PCR method and by the automatic system was 90.0% (27/30). For all isolates of E. faecium and E. faecalis we observed 100% agreement. Resistance frequencies were higher in E. faecium than E. faecalis. The resistance rates obtained were higher for erythromycin (86.7%), vancomycin (80.0%), tetracycline (43.35) and gentamicin (33.3%). The correlation between disk diffusion and automation revealed an agreement for the majority of the antibiotics with category agreement rates of > 80%. The PCR-based assay, the van(A) gene was detected in 100% of vancomycin resistant enterococci. This assay is simple to conduct and reliable in the identification of clinically relevant enterococci. The data obtained reinforced the need for an improvement of the automated system to identify some enterococci.
Resumo:
Introduction: Urinary tract infection (UTI) has a high incidence and recurrence, therefore, treatment is empirical in the majority of cases. Objectives: The aim of this study was to analyze the urine cultures performed at a secondary hospital, during two periods, 2005-2006 and 2010-2011, and to estimate the microbial resistance. Patients and methods: We analyzed 11,943 aerobic urine cultures according to basic demographic data and susceptibility to antibiotics in accordance with the Clinical and Laboratory Standards Institute (CLSI) for Vitek 1 and 2. Results: Most of our cohort consisted of young adult females that were seen at the Emergency Department. E. coli was the most frequent (70.2%) among the 75 species isolated. Resistance of all isolates was ≥ 20% for trimethoprim/sulfamethoxazole (TMP/SMX), norfloxacin, nitrofurantoin, cefazolin and nalidixic acid. Although E. coli was more susceptible (resistance ≥ 20% for TMP/SMX and nalidixic acid) among all of the isolates, when classified by the number and percentage of antibiotic resistance. Global resistance to fluoroquinolones was approximately 12%. Risk factors for E. coli were female gender and an age less than 65 years. Men and patients older than 65 years of age, presented more resistant isolates. Extended spectrum beta-lactamases (ESBL) were identified in 173 out of 5,722 Gram-negative isolates (3.0%) between 2010 and 2011. Conclusion: E. coli was the most frequent microbe isolated in the urine cultures analyzed in this study. There was a significant evolution of bacterial resistance between the two periods studied. In particular, the rise of bacterial resistance to fluoroquinolones was concerning.
Resumo:
Silver nanoparticles (AgNPs) are metal structures at the nanoscale. AgNPs have exhibited antimicrobial activities against fungi and bacteria; however synthesis of AgNPs can generate toxic waste during the reaction process. Accordingly, new routes using non-toxic compounds have been researched. The proposal of the present study was to synthesize AgNPs using ribose as a reducing agent and sodium dodecyl sulfate (SDS) as a stabilizer. The antifungal activity of these particles against C. albicans and C. tropicalis was also evaluated. Stable nanoparticles 12.5 ± 4.9 nm (mean ± SD) in size were obtained, which showed high activity against Candida spp. and could represent an alternative for fungal infection treatment.
Resumo:
SUMMARY In this study, the bioactivity of Talinum paniculatum was evaluated, a plant widely used in folk medicine. The extract from the T. paniculatum leaves (LE) was obtained by percolation with ethanol-water and then subjecting it to liquid-liquid partitions, yielding hexane (HX), ethyl acetate (EtOAc), butanol (BuOH), and aqueous (Aq) fractions. Screening for antimicrobial activity of the LE and its fractions was evaluated in vitro through broth microdilution method, against thirteen pathogenic and non-pathogenic microorganisms, and the antimycobacterial activity was performed through agar diffusion assay. The cytotoxic concentrations (CC90) for LE, HX, and EtOAc were obtained on BHK-21 cells by using MTT reduction assay. The LE showed activity against Serratia marcescens and Staphylococcus aureus, with Minimum Inhibitory Concentration (MIC) values of 250 and 500 µg/mL, respectively. Furthermore, HX demonstrated outstanding activity against Micrococcus luteus and Candida albicans with a MIC of 31.2 µg/mL in both cases. The MIC for EtOAc also was 31.2 µg/mL against Escherichia coli. Conversely, BuOH and Aq were inactive against all tested microorganisms and LE proved inactive against Mycobacterium tuberculosisand Mycobacterium bovisas well. Campesterol, stigmasterol, and sitosterol were the proposed structures as main compounds present in the EF and HX/EtOAc fractions, evidenced by mass spectrometry. Therefore, LE, HX, and EtOAc from T. paniculatumshowed potential as possible sources of antimicrobial compounds, mainly HX, for presenting low toxicity on BHK-21 cells with excellent Selectivity Index (SI = CC90/MIC) of 17.72 against C. albicans.
Resumo:
Introduction: Schistosomiasis is a chronic disease caused by trematode flatworms of the genus Schistosoma and its control is dependent on a single drug, praziquantel (PZQ), but concerns over PZQ resistance have renewed interest in evaluating the in vitro susceptibility of recent isolates of Schistosoma mansoni to PZQ in comparison with well-established strains in the laboratory. Material and methods: The in vitro activity of PZQ (6.5-0.003 µg/mL) was evaluated in terms of mortality, reduced motor activity and ultrastructural alterations against S. mansoni. Results: After 3 h of incubation, PZQ, at 6.5 µg/mL, caused 100% mortality of all adult worms in the three types of recent isolates, while PZQ was inactive at concentrations of 0.08-0.003 µg/mL after 3 h of incubation. The results show that the SLM and Sotave isolates basically presented the same pattern of susceptibility, differing only in the concentration of 6.5 µg/mL, where deaths occurred from the range of 1.5 h in Sotave and just in the 3 h range of SLM. Additionally, this article presents ultrastructural evidence of rapid severe PZQ-induced surface membrane damage in S. mansoni after treatment with the drug, such as disintegration, sloughing, and erosion of the surface. Conclusion: According to these results, PZQ is very effective to induce tegument destruction of recent isolates of S. mansoni.
Resumo:
The present investigation was performed to evaluate the susceptibility of seven clones isolated from the highly resistant Colombian strains, prototype of Biodeme Type III. Seven clones previously obtained, showed a phenotypic homogeneity and high similarity with the parental strain. Eight groups of 30 mice were inoculated with one of seven clones or the parental strain; 20 were treated with benznidazole (100mg/kg/day) and 10 were untreated controls. Cure evaluations were done by parasitological and serological tests and PCR. Cure rates varied from 0% (null) to 16.7%. Correlation between positivity of parasitological and serological tests with positive PCR reached 37%. The results demonstrated the high resistance of the clones, suggesting the predominance of a highly resistant principal clone in this strain. The findings apparently indicate that the possibility of cure is minimal for patients infected with this biodeme; a fact that could affect the control of Chagas' disease through treatment of chronically infected people.
Resumo:
Aedes aegypti (L) (Diptera: Culicidae) was reared in several concentrations of diflubenzuron and methoprene under laboratory conditions in Uberlândia, State of Minas Gerais, southeastern Brazil. Characteristics such as LC50 and LC95, the susceptibility of immature stages of different ages to these insect growth regulators and their residual effects were studied. The LC50 and LC95 of diflubenzuron and methoprene were 5.19 and 12.24 ppb; 19.95 and 72.08 ppb, respectively. While diflubenzuron caused great mortality in all larval instars, methoprene was more effective when the mosquito was exposed from the start of the fourth larval instar onwards. Commercial concentrations of these two insect growth regulators close to LC95 presented greater residual activity than did their respective technical formulations. The parameters were compared with those obtained elsewhere. The characteristics investigated here indicate that these insect growth regulators are effective alternatives for controlling the dengue vector in the Uberlândia region.
Resumo:
The present study had the aim of testing the hexane and methanol extracts of avocado seeds, in order to determine their toxicity towards Artemia salina, evaluate their larvicidal activity towards Aedes aegypti and investigate their in vitro antifungal potential against strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis through the microdilution technique. In toxicity tests on Artemia salina, the hexane and methanol extracts from avocado seeds showed LC50 values of 2.37 and 24.13mg mL-1 respectively. Against Aedes aegypti larvae, the LC50 results obtained were 16.7mg mL-1 for hexane extract and 8.87mg mL-1 for methanol extract from avocado seeds. The extracts tested were also active against all the yeast strains tested in vitro, with differing results such that the minimum inhibitory concentration of the hexane extract ranged from 0.625 to 1.25mg L-¹, from 0.312 to 0.625mg mL-1 and from 0.031 to 0.625mg mL-1, for the strains of Candida spp, Cryptococcus neoformans and Malassezia pachydermatis, respectively. The minimal inhibitory concentration for the methanol extract ranged from 0.125 to 0.625mg mL-1, from 0.08 to 0.156mg mL-1 and from 0.312 to 0.625mg mL-1, for the strains of Candida spp., Cryptococcus neoformans and Malassezia pachydermatis, respectively.
Resumo:
INTRODUCTION: The aim of the present study was to verify the coexistence between Aedes aegypti and Aedes albopictus populations in municipalities of the States of Paraná and Santa Catarina with different urbanization profiles where dengue occurs and evaluate their susceptibility to the organophosphate temephos. METHODS: The number of eggs per ovitrap were counted and incubated for hatching to identify the species. Data analysis of the populations was conducted to determine randomness and aggregation, using the variance-to-mean ratio (index of dispersion). Susceptibility to temephos was evaluated by estimation of the resistance ratios RR50 and RR95. Aedes aegypti samples were compared with the population Rockefeller and Aedes albopictus samples were compared with a population from the State of Santa Catarina and with the Rockefeller population. RESULTS: Coexistence between Aedes aegypti and Aedes albopictus and the aggregation of their eggs were observed at all the sites analyzed in the State of Paraná. CONCLUSIONS: All the Aedes aegypti populations from the State of Parana showed alteration in susceptibility status to the organophosphate temephos, revealing incipient resistance. Similarly, all the Aedes albopictus populations (States of Paraná and Santa Catarina) presented survival when exposed to the organophosphate temephos.