100 resultados para 28S rRNA SSRs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corynebacterium diphtheriae, Corynebacterium ulcerans and Corynebacterium pseudotuberculosis constitute a group of potentially toxigenic microorganisms that are related to different infectious processes in animal and human hosts. Currently, there is a lack of information on the prevalence of disease caused by these pathogens, which is partially due to a reduction in the frequency of routine laboratory testing. In this study, a multiplex polymerase chain reaction (mPCR) assay that can simultaneously identify and determine the toxigenicity of these corynebacterial species with zoonotic potential was developed. This assay uses five primer pairs targeting the following genes: rpoB (Corynebacterium spp), 16S rRNA (C. ulcerans and C. pseudotuberculosis), pld (C. pseudotuberculosis), dtxR (C. diphtheriae) and tox [diphtheria toxin (DT) ]. In addition to describing this assay, we review the literature regarding the diseases caused by these pathogens. Of the 213 coryneform strains tested, the mPCR results for all toxigenic and non-toxigenic strains of C . diphtheriae, C. ulcerans and C. pseudotuberculosis were in 100% agreement with the results of standard biochemical tests and PCR-DT. As an alternative to conventional methods, due to its advantages of specificity and speed, the mPCR assay used in this study may successfully be applied for the diagnosis of human and/or animal diseases caused by potentially toxigenic corynebacterial species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stenotrophomonas maltophilia is a multidrug-resistant nosocomial pathogen that is difficult to identify unequivocally using current methods. Accordingly, because the presence of this microorganism in a patient may directly determine the antimicrobial treatment, conventional polymerase chain reaction (PCR) and real-time PCR assays targeting 23S rRNA were developed for the specific identification of S. maltophilia. The PCR protocol showed high specificity when tested against other species of Stenotrophomonas, non-fermentative Gram-negative bacilli and 100 clinical isolates of S. maltophilia previously identified using the Vitek system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polymerase chain reaction (PCR)-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene) were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34) of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification of mycobacteria is essential because tuberculosis (TB) and mycobacteriosis are clinically indistinguishable and require different therapeutic regimens. The traditional phenotypic method is time consuming and may last up to 60 days. Indeed, rapid, affordable, specific and easy-to-perform identification methods are needed. We have previously described a polymerase chain reaction-based method called a mycobacteria mobility shift assay (MMSA) that was designed for Mycobacterium tuberculosis complex (MTC) and nontuberculous mycobacteria (NTM) species identification. The aim of this study was to assess the MMSA for the identification of MTC and NTM clinical isolates and to compare its performance with that of the PRA-hsp65 method. A total of 204 clinical isolates (102 NTM and 102 MTC) were identified by the MMSA and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing fragments of the 16S rRNA and hsp65 genes. Both methods correctly identified all MTC isolates. Among the NTM isolates, the MMSA alone assigned 94 (92.2%) to a complex or species, whereas the PRA-hsp65 method assigned 100% to a species. A 91.5% agreement was observed for the 94 NTM isolates identified by both methods. The MMSA provided correct identification for 96.8% of the NTM isolates compared with 94.7% for PRA-hsp65. The MMSA is a suitable auxiliary method for routine use for the rapid identification of mycobacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to detect natural infection by Leishmania (Leishmania) infantum in Lutzomyia longipalpis captured in Barcarena, state of Pará, Brazil, through the use of three primer sets. With this approach, it is unnecessary to previously dissect the sandfly specimens. DNA of 280 Lu. longipalpis female specimens were extracted from the whole insects. PCR primers for kinetoplast minicircle DNA (kDNA), the mini-exon gene and the small subunit ribosomal RNA (SSU-rRNA) gene of Leishmania were used, generating fragments of 400 bp, 780 bp and 603 bp, respectively. Infection by the parasite was found with the kDNA primer in 8.6% of the cases, with the mini-exon gene primer in 7.1% of the cases and with the SSU-rRNA gene primer in 5.3% of the cases. These data show the importance of polymerase chain reaction as a tool for investigating the molecular epidemiology of visceral leishmaniasis by estimating the risk of disease transmission in endemic areas, with the kDNA primer representing the most reliable marker for the parasite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a simple method for detection of Plasmodium vivaxand Plasmodium falciparum infection in anophelines using a triplex TaqMan real-time polymerase chain reaction (PCR) assay (18S rRNA). We tested the assay on Anopheles darlingi and Anopheles stephensi colony mosquitoes fed withPlasmodium-infected blood meals and in duplicate on field collected An. darlingi. We compared the real-time PCR results of colony-infected and field collected An. darlingi, separately, to a conventional PCR method. We determined that a cytochromeb-PCR method was only 3.33% as sensitive and 93.38% as specific as our real-time PCR assay with field-collected samples. We demonstrate that this assay is sensitive, specific and reproducible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An investigation was carried out into the genetic mechanisms responsible for multidrug resistance in nine carbapenem-resistant Pseudomonas aeruginosaisolates from different hospitals in Recife, Brazil. Susceptibility to antimicrobial agents was determined by broth microdilution. Polymerase chain reaction (PCR) was employed to detect the presence of genes encoding β-lactamases, aminoglycoside-modifying enzymes (AMEs), 16S rRNA methylases, integron-related genes and OprD. Expression of genes coding for efflux pumps and AmpC cephalosporinase were assessed by quantitative PCR. The outer membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The blaSPM-1, blaKPC-2 and blaGES-1 genes were detected in P. aeruginosaisolates in addition to different AME genes. The loss of OprD in nine isolates was mainly due to frameshift mutations, premature stop codons and point mutations. An association of loss of OprD with the overexpression of MexAB-OprM and MexXY-OprM was observed in most isolates. Hyper-production of AmpC was also observed in three isolates. Clonal relationship of the isolates was determined by repetitive element palindromic-PCR and multilocus sequence typing. Our results show that the loss of OprD along with overexpression of efflux pumps and β-lactamase production were responsible for the multidrug resistance in the isolates analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The identification and characterisation of Cryptosporidiumgenotypes and subtypes are fundamental to the study of cryptosporidiosis epidemiology, aiding in prevention and control strategies. The objective was to determine the genetic diversity ofCryptosporidium in samples obtained from hospitals of Rio de Janeiro, Brazil, and Buenos Aires, Argentina. Samples were analysed by microscopy and TaqMan polymerase chain reaction (PCR) assays forCryptosporidium detection, genotyped by nested-PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene and subtyped by DNA sequencing of the gp60 gene. Among the 89 samples from Rio de Janeiro, Cryptosporidium spp were detected in 26 by microscopy/TaqMan PCR. In samples from Buenos Aires,Cryptosporidium was diagnosed in 15 patients of the 132 studied. The TaqMan PCR and the nested-PCR-RFLP detected Cryptosporidium parvum, Cryptosporidium hominis, and co-infections of both species. In Brazilian samples, the subtypes IbA10G2 and IIcA5G3 were observed. The subtypes found in Argentinean samples were IbA10G2, IaA10G1R4, IaA11G1R4, and IeA11G3T3, and mixed subtypes of Ia and IIa families were detected in the co-infections. C. hominis was the species more frequently detected, and subtype family Ib was reported in both countries. Subtype diversity was higher in Buenos Aires than in Rio de Janeiro and two new subtypes were described for the first time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study evaluated the antifungal susceptibility profile and the production of potential virulence attributes in a clinical strain of Candida nivariensis for the first time in Brazil, as identified by sequencing the internal transcribed spacer (ITS)1-5.8S-ITS2 region and D1/D2 domains of the 28S of the rDNA. For comparative purposes, tests were also performed with reference strains. All strains presented low planktonic minimal inhibitory concentrations (PMICs) to amphotericin B (AMB), caspofungin (CAS), and voriconazole. However, our strain showed elevated planktonic MICs to posaconazole (POS) and itraconazole, in addition to fluconazole resistance. Adherence to inert surfaces was conducted onto glass and polystyrene. The biofilm formation and antifungal susceptibility on biofilm-growing cells were evaluated by crystal violet staining and a XTT reduction assay. All fungal strains were able to bind both tested surfaces and form biofilm, with a binding preference to polystyrene (p < 0.001). AMB promoted significant reductions (≈50%) in biofilm production by our C. nivariensis strain using both methodologies. This reduction was also observed for CAS and POS, but only in the XTT assay. All strains were excellent protease producers and moderate phytase producers, but lipases were not detected. This study reinforces the pathogenic potential of C. nivariensis and its possible resistance profile to the azolic drugs generally used for candidiasis management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acinetobacter baumannii, a strictly aerobic, non-fermentative, Gram-negative coccobacillary rod-shaped bacterium, is an opportunistic pathogen in humans. We recently isolated a multidrug-resistant A. baumannii strain KBN10P02143 from the pus sample drawn from a surgical patient in South Korea. We report the complete genome of this strain, which consists of 4,139,396 bp (G + C content, 39.08%) with 3,868 protein-coding genes, 73 tRNAs and six rRNA operons. Identification of the genes related to multidrug resistance from this genome and the discovery of a novel conjugative plasmid will increase our understanding of the pathogenicity associated with this species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to examine genetic variability in populations of An. cruzii by employing PCR-RAPD and PCR-RFLP markers. All analyses were carried out using individuals of the F1 generation of wild caught females obtained in Santa Catarina State (Florianópolis and São Francisco do Sul), Paraná State (Morretes, Paranaguá and Guaratuba) and São Paulo State (Cananéia). In the PCR-RAPD experiments, seven primers were used for comparisons within and among populations. The restriction profile of the ITS2 including a fragment of both 5.8S and 28S regions of the rDNA was obtained with the enzymes BstUI, HaeIII, TaqI, HhaI, Sau96I, HinfI, HincII and NruI. The PCR-RAPD method detected a large number of polymorphic bands. Genetic distance among populations of An. cruzii varied from 0,0214 to 0,0673, suggesting that all individuals used in the analyses belong to a single species. The number of migrants per generation (Nm) was 4.3, showing the existence of gene flow among populations. The restriction profile of the ITS2, 5.8S and 28S gene regions was similar in all An. cruzii samples, whereas the results obtained by using HhaI and NruI are indicative that the individuals analyzed have nucleotide sequences distinct from those of An. cruzii samples from Peruíbe and Juquiazinho deposited in GenBank.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As raízes das plantas podem estimular a microbiota do solo, a qual pode contribuir para o aumento da eficiência do processo de remediação. Assim, avaliar a magnitude dos efeitos das raízes sobre a microbiota do solo é de grande interesse e de relevância prática e ecológica. Neste trabalho, avaliaram-se a densidade microbiana, a atividade enzimática, a estrutura da comunidade bacteriana e a presença de fungos micorrízicos arbusculares (FMAs) na rizosfera de plantas de ocorrência espontânea em solo de sistema de "landfarming" de resíduos petroquímicos. Avaliaram-se também solos rizosféricos de cinco plantas e solo-controle sem planta por meio de contagens de microrganismos em placas, eletroforese em gel com gradiente desnaturante (DGGE) de fragmentos do gene rRNA 16S, seqüenciamento genético, atividades enzimáticas, percentagem de colonização radicular e contagem e identificação de esporos de FMAs. As plantas estimularam a densidade microbiana total e da população de degradadores de antraceno, com contagens médias de 1,5 x 10(6) e 2,2 x 10(6) UFC g-1 no solo seco, respectivamente, enquanto, no solo sem planta, essas contagens foram de 5,7 x 10(5) e 2,9 x 10(5) UFC g-1 no solo seco para os respectivos grupos microbianos. As espécies de maior efeito foram Bidens pilosa e Eclipta alba. Entretanto, esses efeitos estimulantes não foram verificados para a atividade enzimática do solo. A colonização micorrízica das raízes (em torno de 40 %) e a densidade de esporos nos solos rizosféricos foram elevadas (entre 900 e 4.800 esporos por 50 cm³ de solo), sendo maior na Brachiaria decumbens. Foram identificadas quatro espécies de FMAs: Acaulospora morrowiae, Glomus intraradices, Paraglomus occultum e Archaeospora trappei. Com exceção de G. intraradices, essas espécies não foram observadas em áreas contaminadas por hidrocarbonetos de petróleo. A análise por DGGE revelou que os solos rizosféricos apresentaram comunidades bacteriana diferente do solo sem plantas. As bactérias degradadoras de antraceno isoladas apresentaram relação filogenética com os gêneros Streptomyces, Nocardioides, Arthrobacter, Pseudoxanthomonas e com gêneros não identificados das famílias Cellulomonadaceae, Xanthomonadaceae e Rhodobacteraceae, sendo quatro destes isolados pertencentes aos actinomicetos. Apenas Nocardioides e o gênero relacionado com a família Cellulomonadaceae foram relatados em áreas brasileiras contaminadas com hidrocarbonetos de petróleo. Conclui-se que as plantas estimulam o aumento da densidade de células bacterianas e alteram a comunidade microbiana do solo de "landfarming" de resíduo petroquímico.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diesel oil is a compound derived from petroleum, consisting primarily of hydrocarbons. Poor conditions in transportation and storage of this product can contribute significantly to accidental spills causing serious ecological problems in soil and water and affecting the diversity of the microbial environment. The cloning and sequencing of the 16S rRNA gene is one of the molecular techniques that allows estimation and comparison of the microbial diversity in different environmental samples. The aim of this work was to estimate the diversity of microorganisms from the Bacteria domain in a consortium specialized in diesel oil degradation through partial sequencing of the 16S rRNA gene. After the extraction of DNA metagenomics, the material was amplified by PCR reaction using specific oligonucleotide primers for the 16S rRNA gene. The PCR products were cloned into a pGEM-T-Easy vector (Promega), and Escherichia coli was used as the host cell for recombinant DNAs. The partial clone sequencing was obtained using universal oligonucleotide primers from the vector. The genetic library obtained generated 431 clones. All the sequenced clones presented similarity to phylum Proteobacteria, with Gammaproteobacteria the most present group (49.8 % of the clones), followed by Alphaproteobacteira (44.8 %) and Betaproteobacteria (5.4 %). The Pseudomonas genus was the most abundant in the metagenomic library, followed by the Parvibaculum and the Sphingobium genus, respectively. After partial sequencing of the 16S rRNA, the diversity of the bacterial consortium was estimated using DOTUR software. When comparing these sequences to the database from the National Center for Biotechnology Information (NCBI), a strong correlation was found between the data generated by the software used and the data deposited in NCBI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bactérias produtoras de auxinas habitam raízes de orquídeas e podem trazer benefícios para a planta hospedeira. Plantas dessa família são multiplicadas em condições assimbióticas in vitro e pouco se conhece sobre a função desses microrganismos para a aclimatização ex vitro. Quatro rizobactérias isoladas da espécie Cattleya walkeriana foram avaliadas por sua capacidade de promoção do crescimento e sobrevivência de plântulas germinadas in vitro durante a aclimatização. Essas rizobactérias foram identificadas como Bacillus, Burkholderia, Enterobacter e Curtobacterium, com base no sequenciamento do gene 16S rRNA. A presença de compostos indólicos no sobrenadante filtrado de culturas líquidas foi quantificada por ensaios colorimétricos e cromatografia líquida de alta eficiência (CLAE). Ácidos 3-indol lático (AIL) e indol-3-acetaldeído (AIAld) foram encontrados em grande quantidade, exceto na cultura de Enterobacter sp., em que ácido 3-indol acético (AIA) e ácido 3-indol pirúvico (AIP) prevaleceram. As rizobactérias foram inoculadas em plântulas germinadas in vitro, aclimatizadas em casa de vegetação durante 90 dias e avaliadas quanto à sua capacidade de promover o crescimento. Burkholderia sp. e Curtobacterium sp. proporcionaram a menor eficiência para o crescimento, enquanto Bacillus sp. e Enterobacter sp. favoreceram incrementos em todas as características avaliadas e ampliaram a percentagem de sobrevivência. Este trabalho elucida a função de rizobactérias produtoras de auxinas e seus benefícios para a promoção de crescimento de uma orquídea brasileira germinada em condições assimbióticas durante a aclimatização - condição que confere alta letalidade e limitante para a propagação de orquídeas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure) and ammonia-oxidizing Archaea (richness and community composition) were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009) from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old), agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE) using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA) of Archaea (306 sequences), the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366), followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715), crops (H' = 1.4613; D = 0.3309) and secondary forest (H' = 0.8633; D = 0.5405). All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 %) previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.