129 resultados para 050302 Land Capability and Soil Degradation
Resumo:
Fields of murundus (FM) are wetlands that provide numerous ecosystem services. The objectives of this study were to evaluate the chemical [organic carbon (OC), P, K+, Ca2+, Mg2+, Al3+ and H+Al] and physical [texture and bulk density (Bd)] soil attributes and calculate the organic matter (OM) and nutrient stock (P, Ca, Mg, and K) in soils of FM located in the Guapore River basin in Mato Grosso. Thirty-six sampling points were selected, and soil samples were collected from two environments: the murundu and plain area surrounding (PAS). At each sampling point, mini trenches of 0.5 × 0.5 × 0.4 m were opened and disturbed and undisturbed soil samples were collected at depths of 0-0.1, 0.1-0.2, and 0.2-0.4 m. In the Principal Component Analysis the variables H+Al (49%) and OM (4%) were associated with the F1 component and sand content (47%) with the F2 component. The FM had lower pH values and higher concentrations of K+, P, and H+Al than PAS at all depths (p < 0.05). Additionally, FM stocked up to 433, 360, 205, and 11 kg ha-1 of Ca, Mg, K, and P, respectively, for up to a depth of 0.2 m. The murundu stored two times more K and three times more P than that in the PAS. Our results show that the FM has high sand content and Bd greater than 1.5 Mg m-3, high acidity, low OC content, and low nutrient concentrations. Thus, special care must be taken to preserve FM such that human intervention does not trigger environmental imbalances.
Resumo:
ABSTRACT Amphibians are the most threatened vertebrate group according to the IUCN. Land-use and land cover change (LULCC) and climate change (CC) are two of the main factors related to declining amphibian populations. Given the vulnerability of threatened and rare species, the study of their response to these impacts is a conservation priority. The aim of this work was to analyze the combined impact of LULCC and CC on the regionally endemic species Melanophryniscus sanmartini Klappenbach, 1968. This species is currently categorized as near threatened by the IUCN, and previous studies suggest negative effects of projected changes in climate. Using maximum entropy methods we modeled the effects of CC on the current and mid-century distribution of M. sanmartini under two IPCC scenarios - A2 (severe) and B2 (moderate). The effects of LULCC were studied by superimposing the potential distribution with current land use, while future distribution models were evaluated under the scenario of maximum expansion of soybean and afforestation in Uruguay. The results suggest that M. sanmartini is distributed in eastern Uruguay and the south of Brazil, mainly related to hilly and grasslands systems. Currently more than 10% of this species' distribution is superimposed by agricultural crops and exotic forest plantations. Contrasting with a recent modelling study our models suggest an expansion of the distribution of M. sanmartini by mid-century under both climate scenarios. However, despite the rise in climatically suitable areas for the species in the future, LULCC projections indicate that the proportion of modified habitats will occupy up to 25% of the distribution of M. sanmartini. Future change in climate conditions could represent an opportunity for M. sanmartini, but management measures are needed to mitigate the effects of habitat modification in order to ensure its survival and allow the eventual expansion of its distribution.
Resumo:
The quality of semi-detailed (scale 1:100.000) soil maps and the utility of a taxonomically based legend were assessed by studying 33 apparently homogeneous fields with strongly weathered soils in two regions in São Paulo State: Araras and Assis. An independent data set of 395 auger sites was used to determine purity of soil mapping units and analysis of variance within and between mapping units and soil classification units. Twenty three soil profiles were studied in detail. The studied soil maps have a high purity for some legend criteria, such as B horizon type (> 90%) and soil texture class (> 80%). The purity for the "trophic character" (eutrophic, dystrophic, allic) was only 55% in Assis. It was 88% in Araras, where many soil units had been mapped as associations. In both regions, the base status of clay-textured soils was generally better than suggested by the maps. Analysis of variance showed that mapping was successful for "durable" soil characteristics such as clay content (> 80% of variance explained) and cation exchange capacity (≥ 50% of variance explained) of 0-20 and 60-80 cm layers. For soil characteristics that are easily modified by management, such as base saturation of the 0-20 cm layer, the maps had explained very little (< 15%) of the total variance in the study areas. Intermediate results were obtained for base saturation of the 60-80 cm layer (56% in Assis; 42% in Araras). Variance explained by taxonomic groupings that formed the basis for the legend of the soil maps was similar to, often even smaller than, variance explained by mapping units. The conclusion is that map boundaries have been very carefully located, but descriptions of mapping units could be improved. In future mappings, this could possibly be done at low cost by (a) bulk sampling to remove short range variation and enhance visualization of spatial patterns at distances > 100 m; (b) taking advantage of correlations between easily measured soil characteristics and chemical soil properties and, (c) unbending the link between legend criteria and a taxonomic system. The maps are well suited to obtain an impression of land suitability for high-input farming. Additional field work and data on former land use/management are necessary for the evaluation of chemical properties of surface horizons.
Resumo:
Erosion is deleterious because it reduces the soil's productivity capacity for growing crops and causes sedimentation and water pollution problems. Surface and buried crop residue, as well as live and dead plant roots, play an important role in erosion control. An efficient way to assess the effectiveness of such materials in erosion reduction is by means of decomposition constants as used within the Revised Universal Soil Loss Equation - RUSLE's prior-land-use subfactor - PLU. This was investigated using simulated rainfall on a 0.12 m m-1 slope, sandy loam Paleudult soil, at the Agriculture Experimental Station of the Federal University of Rio Grande do Sul, in Eldorado do Sul, State of Rio Grande do Sul, Brazil. The study area had been covered by native grass pasture for about fifteen years. By the middle of March 1996, the sod was mechanically mowed and the crop residue removed from the field. Late in April 1996, the sod was chemically desiccated with herbicide and, about one month later, the following treatments were established and evaluated for sod biomass decomposition and soil erosion, from June 1996 to May 1998, on duplicated 3.5 x 11.0 m erosion plots: (a) and (b) soil without tillage, with surface residue and dead roots; (c) soil without tillage, with dead roots only; (d) soil tilled conventionally every two-and-half months, with dead roots plus incorporated residue; and (e) soil tilled conventionally every six months, with dead roots plus incorporated residue. Simulated rainfall was applied with a rotating-boom rainfall simulator, at an intensity of 63.5 mm h-1 for 90 min, eight to nine times during the experimental period (about every two-and-half months). Surface and subsurface sod biomass amounts were measured before each rainfall test along with the erosion measurements of runoff rate, sediment concentration in runoff, soil loss rate, and total soil loss. Non-linear regression analysis was performed using an exponential and a power model. Surface sod biomass decomposition was better depicted by the exponential model, while subsurface sod biomass was by the power model. Subsurface sod biomass decomposed faster and more than surface sod biomass, with dead roots in untilled soil without residue on the surface decomposing more than dead roots in untilled soil with surface residue. Tillage type and frequency did not appreciably influence subsurface sod biomass decomposition. Soil loss rates increased greatly with both surface sod biomass decomposition and decomposition of subsurface sod biomass in the conventionally tilled soil, but they were minimally affected by subsurface sod biomass decomposition in the untilled soil. Runoff rates were little affected by the studied treatments. Dead roots plus incorporated residues were effective in reducing erosion in the conventionally tilled soil, while consolidation of the soil surface was important in no-till. The residual effect of the turned soil on erosion diminished gradually with time and ceased after two years.
Resumo:
Properties of a claim loam soil, collected in Aranjuez (Madrid) and enriched with organic matter and microorganisms, were evaluated under controlled temperature and moisture conditions, over a period of three months. The following treatments were carried out: soil (control); soil + 50 t ha-1 of animal manure (E50); soil + 50 t ha-1 of animal manure + 30 L ha-1 of effective microorganisms (E50EM); soil + 30 t ha-1 of the combination of various green crop residues and weeds (RC30) and soil + 30 t ha-1 of the combination of various green crop residues and weeds + 30 L ha-1 of effective microorganisms (RC30EM). Soil samples were taken before and after incubation and their physical, chemical, and microbiological parameters analyzed. Significant increase was observed in the production of exopolysaccharides and basic phosphatase and esterase enzyme activities in the treatments E50EM and RC30EM, in correlation with the humification of organic matter, water retention at field capacity, and the cationic exchange capacity (CEC) of the same treatments. The conclusion was drawn that the incorporation of a mixture of effective microorganisms (EM) intensified the biological soil activity and improved physical and chemical soil properties, contributing to a quick humification of fresh organic matter. These findings were illustrated by the microbiological activities of exopolysaccharides and by alkaline phosphatase and esterase enzymes, which can be used as early and integrated soil health indicators.
Resumo:
The behavior of glyphosate in a Rhodic Oxisol, collected from fields under no-till and conventional management systems in Ponta Grossa, Parana state (Brazil) was investigated. Both agricultural systems had been in production for 23 years. Glyphosate mineralization, soil-bound forms, sorption and desorption kinetics, sorption/desorption batch experiments, and soil glyphosate phythoavailability (to Panicum maximum) were determined. The mineralization experiment was set up in a completely randomized design with a 2 x 2 factorial scheme (two management systems and two 14C radiolabelled positions in the glyphosate), with five replicates. 14CO2 evolution was measured in 7-day intervals during 63 days. The glyphosate sorption kinetics was investigated in a batch experiment, employing a glyphosate concentration of 0.84 mg L-1. The equilibration solution was 0.01 mol L-1 CaCl2 and the equilibration times were 0, 10, 30, 60, 120, 240, and 360 min. Sorption/desorption of glyphosate was also investigated using equilibrium batch experiments. Five different concentrations of the herbicide were used for sorption (0.42, 0.84, 1.68, 3.36, and 6.72 mg L-1) and one concentration for desorption. Glyphosate phytoavailability was analyzed in a 2 x 5 factorial scheme with two management systems and five glyphosate concentrations added to soil (0, 4.2, 8.4, 42.0, and 210.0 µg g-1) in a completely randomized design. Phytotoxicity symptoms in P. maximum were evaluated for different periods. The soil under both management systems showed high glyphosate sorption, which impeded its desorption and impaired the mineralization in the soil solution. Practically the total amount of the applied glyphosate was quickly sorbed (over 90 % sorbed within 10 min). Glyphosate bound to residues did not have adverse effects on P. maximum growth. The mineralization of glyphosate was faster under no-till and aminomethylphosphonic acid was the main glyphosate metabolite.
Resumo:
Farm planning requires an assessment of the soil class. Research suggest that the Diagnosis and Recommendation Integrated System (DRIS) has the capacity to evaluate the nutritional status of coffee plantations, regardless of environmental conditions. Additionally, the use of DRIS could reduce the costs for farm planning. This study evaluated the relationship between the soil class and nutritional status of coffee plants (Coffea canephora Pierre) using the Critical Level (CL) and DRIS methods, based on two multivariate statistical methods (discriminant and multidimensional scaling analyses). During three consecutive years, yield and foliar concentration of nutrients (N, P, K, Ca, Mg, S, B, Zn, Mn, Fe and Cu) were obtained from coffee plantations cultivated in Espírito Santo state. Discriminant analysis showed that the soil class was an important factor determining the nutritional status of the coffee plants. The grouping separation by the CL method was not as effective as the DRIS one. The bidimensional analysis of Euclidean distances did not show the same relationship between plant nutritional status and soil class. Multidimensional scaling analysis by the CL method indicated that 93.3 % of the crops grouped into one cluster, whereas the DRIS method split the fields more evenly into three clusters. The DRIS method thus proved to be more consistent than the CL method for grouping coffee plantations by soil class.
Resumo:
Soil tillage promotes changes in soil structure. The magnitude of the changes varies with the nature of the soil, tillage system and soil water content and decreases over time after tillage. The objective of this study was to evaluate short-term (one year period) and long-term (nine year period) effects of soil tillage and nutrient sources on some physical properties of a very clayey Hapludox. Five tillage systems were evaluated: no-till (NT), chisel plow + one secondary disking (CP), primary + two (secondary) diskings (CT), CT with burning of crop residues (CTb), and CT with removal of crop residues from the field (CTr), in combination with five nutrient sources: control without nutrient application (C); mineral fertilizers, according to technical recommendations for each crop (MF); 5 Mg ha-1 yr-1 of poultry litter (wetmatter) (PL); 60 m³ ha-1 yr-1 of cattle slurry (CS) and; 40 m³ ha-1 yr-1 of swine slurry (SS). Bulk density (BD), total porosity (TP), and parameters related to the water retention curve (macroporosity, mesoporosity and microporosity) were determined after nine years and at five sampling dates during the tenth year of the experiment. Soil physical properties were tillage and time-dependent. Tilled treatments increased total porosity and macroporosity, and reduced bulk density in the surface layer (0.00-0.05 m), but this effect decreased over time after tillage operations due to natural soil reconsolidation, since no external stress was applied in this period. Changes in pore size distribution were more pronounced in larger and medium pore diameter classes. The bulk density was greatest in intermediate layers in all tillage treatments (0.05-0.10 and 0.12-0.17 m) and decreased down to the deepest layer (0.27-0.32 m), indicating a more compacted layer around 0.05-0.20 m. Nutrient sources did not significantly affect soil physical and hydraulic properties studied.
Resumo:
The impact of charcoal production on soil hydraulic properties, runoff response and erosion susceptibility were studied in both field and simulation experiments. Core and composite samples, from 12 randomly selected sites within the catchment of Kotokosu were taken from the 0-10 cm layer of a charcoal site soil (CSS) and adjacent field soils (AFS). These samples were used to determine saturated hydraulic conductivity (Ksat), bulk density, total porosity, soil texture and color. Infiltration, surface albedo and soil surface temperature were also measured in both CSS and AFS. Measured properties were used as entries in a rainfall runoff simulation experiment on a smooth (5 % slope) plot of 25 x 25 m grids with 10 cm resolutions. Typical rainfall intensities of the study watershed (high, moderate and low) were applied to five different combinations of Ks distributions that could be expected in this landscape. The results showed significantly (p < 0.01) higher flow characteristics of the soil under charcoal kilns (increase of 88 %). Infiltration was enhanced and runoff volume reduced significantly. The results showed runoff reduction of about 37 and 18 %, and runoff coefficient ranging from 0.47-0.75 and 0.04-0.39 or simulation based on high (200 mm h-1) and moderate (100 mm h-1) rainfall events over the CSS and AFS areas, respectively. Other potential impacts of charcoal production on watershed hydrology were described. The results presented, together with watershed measurements, when available, are expected to enhance understanding of the hydrological responses of ecosystems to indiscriminate charcoal production and related activities in this region.
Resumo:
Soil properties are closely related with crop production and spite of the measures implemented, spatial variation has been repeatedly observed and described. Identifying and describing spatial variations of soil properties and their effects on crop yield can be a powerful decision-making tool in specific land management systems. The objective of this research was to characterize the spatial and temporal variations in crop yield and chemical and physical properties of a Rhodic Hapludox soil under no-tillage. The studied area of 3.42 ha had been cultivated since 1985 under no-tillage crop rotation in summer and winter. Yield and soil property were sampled in a regular 10 x 10 m grid, with 302 sample points. Yields of several crops were analyzed (soybean, maize, triticale, hyacinth bean and castor bean) as well as soil chemical (pH, Soil Organic Matter (SOM), P, Ca2+, Mg2+, H + Al, B, Fe, Mn, Zn, CEC, sum of bases (SB), and base saturation (V %)) and soil physical properties (saturated hydraulic conductivity, texture, density, total porosity, and mechanical penetration resistance). Data were analyzed using geostatistical analysis procedures and maps based on interpolation by kriging. Great variation in crop yields was observed in the years evaluated. The yield values in the Northern region of the study area were high in some years. Crop yields and some physical and soil chemical properties were spatially correlated.
Resumo:
The intensive use of land alters the distribution of the pore size which imparts consequences on the soil physical quality. The Least Limiting Water Range (LLWR) allows for the visualization of the effects of management systems upon either the improvement or the degradation of the soil physical quality. The objective of this study was to evaluate the physical quality of a Red Latosol (Oxisol) submited to cover crops in the period prior to the maize crop in a no-tillage and conventional tillage system, using porosity, soil bulk density and the LLWR as attributes. The treatments were: conventional tillage (CT) and a no-tillage system with the following cover crops: sunn hemp (Crotalaria juncea L.) (NS), pearl millet (Pennisetum americanum (L.) Leeke) (NP) and lablab (Dolichos lablab L.) (NL). The experimental design was randomized blocks in subdivided plots with six replications, with the plots being constituted by the treatments and the subplots by the layers analyzed. The no-tillage systems showed higher total porosity and soil organic matter at the 0-0.5 m layer for the CT. The CT did not differ from the NL or NS in relation to macroporosity. The NP showed the greater porosity, while CT and NS presented lower soil bulk density. No < 10 % airing porosity was found for the treatments evaluated, and value for water content where soil aeration is critical (θPA) was found above estimated water content at field capacity (θFC) for all densities. Critical soil bulk density was of 1.36 and 1.43 Mg m-3 for NP and CT, respectively. The LLWR in the no-tillage systems was limited in the upper part by the θFC, and in the bottom part, by the water content from which soil resistance to penetration is limiting (θPR). By means of LLWR it was observed that the soil presented good physical quality.
Resumo:
Microbial activity and biochemical properties are important indicators of the impact of organic composting on soil. The objective of this study was to evaluate some indicators of soil microbial and biochemical processes after application of compost (household waste). A Typic Acrustox, sampled at a depth of 10 cm under Cerrado biome vegetation, was evaluated in three treatments: control (soil without organic compost amendment) and soil with two doses of domestic organic compost (10 and 20 g kg-1 soil). The following properties were evaluated: released C (C-CO2): microbial respiration 15 days after incubation; microbial biomass C (MBC); total glucose (TG); metabolic quotient (qCO2); and enzyme activity of β-glucosidase and acid and alkaline phosphatase. The application of household compost, at doses of 10 and 20 g kg-1 Typic Acrustox, resulted in significant gains in microbial activity, organic C and C stock, as evidenced by increased MBC and TG levels. On the other hand, qCO2 decreases indicated greater microbial diversity and more efficient energy use. The addition of compost, particularly the 20 g kg-1 dose, strongly influenced the enzyme β-glucosidase and phosphatase (acid and alkaline). The β-glucosidase activity was significantly increased and acid phosphatase activity increased more than the alkaline. The ratio of β-glucosidase to MBC was greater in the control than in the composted treatments which suggests that there were more enzymes in the control than in the substrate or that the addition of compost induced a great MBC increase.
Resumo:
Little is currently known about modifications in edaphic characteristics caused by short-rotation eucalyptus and the impacts of these alterations on the sustainability of eucalyptus wood production. This study was carried out to identify theses changes at five sites of eucalyptus plantation in the region of the Rio Doce Valley, state of Minas Gerais, Brazil. Areas with more than three previous eucalyptus cycles, adjacent to pasture land or native forest, were chosen. Soil samples were collected and soil fertility analyzed by routine methods and other fractionation methods in order to measure alterations in the K, Ca and Mg contents as a consequence of eucalyptus cultivation. In the eucalyptus areas, reductions in the exchangeable Ca2+, Mg2+ and K+ contents and pH were observed and increased Al3+ and H + Al contents. Of all nutrients, only P contents (Mehlich-1 P) increased in the eucalyptus areas. The reduction in exchangeable forms and in medium-term soil nutrient pools indicates the need for higher nutrient rates than the currently applied in order to prevent nutritional limitations and soil nutrient exhaustion. After several eucalyptus rotations there was a recovery in the SOM content in comparison to degraded pasture soils, although not to the level of the native forest soil. The positive correlation between effective CEC and medium-term non-exchangeable Ca, Mg and K with SOM emphasizes the need for adequate fertilizer and plant residue management to sustain or even increase forest productivity in future cycles.
Resumo:
The semi-arid region of Chiapas is dominated by N2 -fixing shrubs, e.g., Acacia angustissima. Urea-fertilized soil samples under maize were collected from areas covered and uncovered by A. angustissima in different seasons and N2O and CO2 emissions were monitored. The objective of this study was to determine the effects of urea and of the rainy and dry season on gas emissions from semi-arid soil under laboratory conditions. Urea and soil use had no effect on CO2 production. Nitrons oxide emission from soil was three times higher in the dry than in the rainy season, while urea fertilization doubled emissions. Emissions were twice as high from soil sampled under A. angustissima canopy than from arable land, but 1.2 lower than from soil sampled outside the canopy, and five times higher from soil incubated at 40 % of the water-holding capacity (WHC) than at soil moisture content, but 15 times lower than from soil incubated at 100 WHC. It was found that the soil sampling time and water content had a significant effect on N2O emissions, while N fertilizer and sampling location were less influent.
Resumo:
The structural stability and restructuring ability of a soil are related to the methods of crop management and soil preparation. A recommended strategy to reduce the effects of soil preparation is to use crop rotation and cover crops that help conserve and restore the soil structure. The aim of this study was to evaluate and quantify the homogeneous morphological units in soil under conventional mechanized tillage and animal traction, as well as to assess the effect on the soil structure of intercropping with jack bean (Canavalia ensiformis L.). Profiles were analyzed in April of 2006, in five counties in the Southern-Central region of Paraná State (Brazil), on family farms producing maize (Zea mays L.), sometimes intercropped with jack bean. The current structures in the crop profile were analyzed using Geographic Information Systems (GIS) and subsequently principal component analysis (PCA) to generate statistics. Morphostructural soil analysis showed a predominance of compact units in areas of high-intensity cultivation under mechanized traction. The cover crop did not improve the structure of the soil with low porosity and compact units that hamper the root system growth. In areas exposed to animal traction, a predominance of cracked units was observed, where roots grew around the clods and along the gaps between them.