708 resultados para Trypanosoma cruzi-like trypanosomes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

São apresentados dados referentes às espécies e infecção natural de triatomíneos na Ilha de São Luis-MA. Dos triatomíneos coletados foram encontradas as seguintes espécies: Rhodnius pictipes Rhodnius neglectus, Rhodnius nasutus, Triatoma rubrofasciata, Panstrongylus lignarus e Panstrogylus geniculatus. A presença de infecção natural por Trypanosoma do tipo cruzi foi detectada em 19,7% do total de triatomíneos sendo o R. pictipes a espécie mais homogênea em distribuição na Ilha e com índice de infecção natural de 38,8%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on phylogenetic analysis of 18S rRNA sequences and clade taxon composition, this paper adopts a biogeographical approach to understanding the evolutionary relationships of the human and primate infective trypanosomes, Trypanosoma cruzi, T. brucei, T. rangeli and T. cyclops. Results indicate that these parasites have divergent origins and fundamentally different patterns of evolution. T. cruzi is placed in a clade with T. rangeli and trypanosomes specific to bats and a kangaroo. The predominantly South American and Australian origins of parasites within this clade suggest an ancient southern super-continent origin for ancestral T. cruzi, possibly in marsupials. T. brucei clusters exclusively with mammalian, salivarian trypanosomes of African origin, suggesting an evolutionary history confined to Africa, while T. cyclops, from an Asian primate appears to have evolved separately and is placed in a clade with T. (Megatrypanum) species. Relating clade taxon composition to palaeogeographic evidence, the divergence of T. brucei and T. cruzi can be dated to the mid-Cretaceous, around 100 million years before present, following the separation of Africa, South America and Euramerica. Such an estimate of divergence time is considerably more recent than those of most previous studies based on molecular clock methods. Perhaps significantly, Salivarian trypanosomes appear, from these data, to be evolving several times faster than Schizotrypanum species, a factor which may have contributed to previous anomalous estimates of divergence times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triatomine bug species such as Microtriatoma trinidadensis, Eratyrus mucronatus, Belminus herreri, Panstrongylus lignarius, and Triatoma tibiamaculata are exquisitely adapted to specialist niches. This suggests a long evolutionary history, as well as the recent dramatic spread a few eclectic, domiciliated triatomine species. Virtually all species of the genus Rhodnius are primarily associated with palms. The genus Panstrongylus is predominantly associated with burrows and tree cavities and the genus Triatoma with terrestrial rocky habitats or rodent burrows. Two major sub-divisions have been defined within the species Trypanosoma cruzi, as T. cruzi 1 (Z1) and T. cruzi 2 (Z2). The affinities of a third group (Z3) are uncertain. Host and habitat associations lead us to propose that T. cruzi 1 (Z1) has evolved in an arboreal, palm tree habitat with the triatomine tribe Rhodniini, in association with the opossum Didelphis. Similarly we propose that T. cruzi (Z2) and Z3 evolved in a terrestrial habitat in burrows and in rocky locations with the triatomine tribe Triatomini, in association with edentates, and/or possibly ground dwelling marsupials. Both sub-divisions of T. cruzi may have been contemporary in South America up to 65 million years ago. Alternatively, T. cruzi 2 (Z2) may have evolved more recently from T. cruzi 1 (Z1) by host transfers into rodents, edentates, and primates. We have constructed a molecular phylogeny of haematophagous vectors, including triatomine bugs, which suggests that faecal transmission of trypanosomes may be the ancestral route. A molecular clock phylogeny suggests that Rhodnius and Triatoma diverged before the arrival, about 40 million years ago, of bats and rodents into South America.