687 resultados para Química Nova
Resumo:
In the oil industry, the paraffination phenomenon is a major problem during oil production, displacement and treatment. Paraffin deposition in subsea flowlines, surface equipment, production string or even in the reservoir, can cause significant and increasing oil losses. To minimize paraffin precipitation, the application of magnetic field in the petroleum path has been suggested based on empiric studies. In this study, we assembled a labscale magnetic conditioner to determine the influence of magnetic field on the physical-chemical properties of two fluids : oil and a paraffin mixture. We observed that magnetic field reduce sample aparent viscosity due to crystal morphology alteration.
Resumo:
Piqui (Caryocar brasiliense Camb) oil was transformed into a cocoa butter-like fat through an enzymatic interesterification reaction using Lipozyme in the presence of stearic acid that was incorporated in the sn 1,3-3,1 position into triglyceride. Stearic acid incorporation was determined by HPLC, based on the quantification of the principal triglycerides (POP, POS e SOS) found in cocoa butter. The proposed process was feasible with a reaction time of 240 minutes with 10% of Lipozyme at 70ºC and substract weight ratio of 0,33 (stearic acid:piqui oil).
Resumo:
Wastewater from a seasoning freeze-drying industry was electrolysed to increase its biodegradability. Stainless-steel electrodes were used at 9.09 A/m², for up to 80 min. Conductivity, pH, biochemical (BOD) and chemical (COD) oxygen demands, Daphnia similis acute toxicity bioassays, and bacteria counting through the plate count agar method were determined after different times of electrolysis. The results (e.g. higher BOD and lower COD) showed that the biodegradability of the wastewater was significantly increased; furthermore, Fe2+ ions liberated by the electrodes cause microorganisms to die and, when oxidised to Fe3+, contribute for the flocculation and sedimentation of solid residues.
Resumo:
The plasma etching of semiconductor surfaces with fluorine-containing compounds has technological interest. Presently, considerable effort is being devoted to understand the chemistry involved. In this work, a numerical modeling analysis of the gas-phase decomposition of CF4/O2 mixtures, in the presence of silicon, was performed. The relative importance of individual processes was determined as well as the effect of the parameters' uncertainties. The results were compared with experimental data. The main etching agent in the system is the fluorine atom. The concentration of the main species, SiF4, CO, CO2 and COF2 depend on the composition of the mixture.
Resumo:
In this work, a numerical modeling analysis of the gas-phase decomposition of SF6 / O2 mixtures, in the presence of silicon, was performed. The relative importance of individual processes and the effect of the parameters' uncertainties were determined. The model was compared with experimental data for the plasma etching of silicon and with the calculated results for the CF4 / O2 system. In both systems the main etching agent is the fluorine atom and the concentration of the major species depends on the composition of the mixture. The etching rate is greater for SF6 / O2.
Resumo:
Angle-resolved electron energy-loss spectra have been measured for the methyl methacrylate (MMA) and styrene molecules in the 0 - 50 eV energy range. The spectra have been obtained at 1 keV incident energy, with an energy resolution of 0.8 eV and covering an angular range of 2.0 to 7.0 degrees. Within our knowledge, this is the first gas-phase excitation spectrum for MMA and styrene in this energy range. The spectra of MMA at small scattering angles are dominated by an intense peak at 6.7 eV followed by a broad band centered at about 16 eV. In the case of styrene, six bands can be observed in the spectra. Based on the angular behaviour of the excitation spectra of these molecules, the low-lying peaks observed are considered to be associated predominantly with dipole-allowed processes. In both cases, new bands can be observed for excitation energies greater than 20 eV. This could be associated with dipole-forbidden transitions to shake-up and doubly-excited states.
Resumo:
A flow system procedure for spectrophotometric determination of ascorbic acid in drugs based on [Fe3+(SCN-)n]+3-n complex decomposition by reduction is described. The flow network was constituted by a set of three-way solenoid valves, controlled by a microcomputer running a software wrote in QuickBasic 4.5 language. The feasibility of the procedure was ascertained by determining ascorbic acid in drug samples with mass ranging from 0.0018 up to 0.0180 g. The results showed an agreement of about 7% when compared with recommended method. Other profitable features such as a standard deviation of 1.5% (n = 7) and a throughput of 120 determinations per hour was also achieved.
Resumo:
Recentlly, we have proposed the representation of lanthanides within AM1 as sparkles for the purpose of obtaing ground state geometries of their complexes. We tested our quantum chemical sparkle model (SMLC/AM1) for the prediction of the crystallographic structure of complexes with coordination number nine, eight and seven. A technique is introduced for the theoretical prediction of eletronic spectra of the organic part of lanthanide complexes by replacing the metal ion by a point charge with the ligands held in their positions as determined by the SMLC/AM1, and by computing the theoretical spectra via the intermediate neglect of differential overlap/spectroscopic-configuration interaction (INDO/S-CI).
Resumo:
This review deals with principles of the liquid-liquid extraction, when performed in flow systems. This approach is frequently used for sample treatment to improve the selectivity and/or sensitivity in analytical measurements. The advances in this area are reported, including the use of monosegmented flow systems to perform metal extraction through both two-phase and single phase processes.
Resumo:
This article gives some basic principles of heterogeneous photocatalysis using titanium dioxide as photocatalyst and the state of art of its applications to the abatement of aqueous and atmospheric pollutants.
Resumo:
Several hundreds of artificial radionuclides are produced as the result of human activities, such as the applications of nuclear reactors and particle accelerators, testing of nuclear weapons and nuclear accidents. Many of these radionuclides are short-lived and decay quickly after their production, but some of them are longer-lived and are released into the environment. From the radiological point of view the most important radionuclides are cesium-137, strontium-90 and plutonium-239, due to their chemical and nuclear characteristics. The two first radioisotopes present long half life (30 and 28 years), high fission yields and chemical behaviour similar to potassium and calcium, respectively. No stable element exists for plutonium-239, that presents high radiotoxicity, long half-life (24000 years) and some marine organisms accumulate plutonium at high levels. The radionuclides introduced into marine environment undergo various physical, chemical and biological processes taking place in the sea. These processes may be due to physical dispersion or complicated chemical and biological interactions of the radionuclides with inorganic and organic suspend matter, variety of living organisms, bottom sediments, etc. The behaviour of radionuclides in the sea depends primarily on their chemical properties, but it may also be influenced by properties of interacting matrices and other environmental factors. The major route of radiation exposure of man to artificial radionuclides occuring in the marine environment is through ingestion of radiologically contamined marine organisms. This paper summarizes the main sources of contamination in the marine environment and presents an overview covering the oceanic distribution of anthropogenic radionuclides in the FAO regions. A great number of measurements of artificial radionuclides have been carried out on various marine environmental samples in different oceans over the world, being cesium-137 the most widely measured radionuclide. Radionuclide concentrations vary from region to region, according to the specific sources of contamination. In some regions, such as the Irish Sea, the Baltic Sea and the Black Sea, the concentrations depend on the inputs due to discharges from reprocessing facilities and from Chernobyl accident. In Brazil, the artificial radioactivity is low and corresponds to typical deposition values due to fallout for the Southern Hemisphere.
Resumo:
This work describes the techniques of construction and several applications of ultramicroelectrodes in electrochemistry and electroanalytical chemistry. Disc shaped UME are produced by embedding metal wires on insulating materials such as glass or epoxy resin. In the field of electrochemistry, UME have been applied in studies of the hydrogen evolution reaction and the electrocrystallization of metals. The negligible values of sensibility for ohmic drop and the enhanced mass transport rate by spherical diffusion are the main advantages of UME in these applications. New important conclusions regarding the phenomena under study were drawn from the experimental results. The applications in electroanalytical chemistry involved the determination of contaminants such as heavy metals and nitrites in natural waters and food products. The use of UME requires little sample manipulation and, in general, no need for oxygen removal or the addition of supporting electrolytes.
Resumo:
The vast binding repertoire of the immune system has been exploited for the generation of tailor-made selective catalysts. Since the first reports of chemical reactions catalyzed by antibodies were published, research in this field, which borders chemistry and biology, has been rapidly established and a number of catalytic antibodies that carry out a wide range of reactions, have been developed. Recent advances have led to antibodies that catalyse complex, multi-step reactions and difficult chemical transformations, as well as reactions that do not have an organic equivalent at all. Current research in this field has been devoted to practical applications of this technology.
Resumo:
In the present paper we discuss, based in our experience, some experimental procedures which may be employed for isolation of active compounds from medicinal plants. We have also emphasized some insights about the way to obtain more active and selective compounds from natural products through structural modifications oriented for analysis of structure-activity relationships.
Resumo:
Infrared spectroscopy laboratories works under permanent care with respect to water contamination, mainly in liquid samples. In this case crystal plates destruction or damage are frequent, increasing the operational expenses. On the other hand, the laboratory which produces such samples must be very careful in drying liquid samples. In this work we develop a simple and inexpensive way to operate in such conditions using polypropylene and HDPE films which were thermally soldered resulting little containers or sample holders. The spectra of sample/sample holder is achieved having the sample holder as background.