48 resultados para yeast autolysate
Resumo:
Cryptococcus neoformans is an opportunistic fungal pathogen that causes meningoencephalitis as the most frequent clinical presentation in immunocompromised patients, mainly in people infected by HIV. This fungus is an environmental encapsulated yeast, commonly found in soil enriched with avian droppings and plant material. A total of 290 samples of pigeon and the other avian droppings, soil, ornamental trees and vegetable material associated with Eucalyptus trees were collected to study environmental sources of Cryptococcus species in Goiânia, Goiás State. The determination of varieties, serotypes and the susceptibility in vitro to fluconazole, itraconazole and amphotericin B of C. neoformans isolates were performed. C. neoformans var. grubii (serotype A) was found in 20.3% (36/177) of pigeon dropping samples and in 14.3% (5/35) of samples of Eucalyptus. None of the environmental isolates of C. neoformans showed in vitro resistance to three antifungal agents. The knowledge of major route for human cryptococcal infection (inhalation of infectious particles from saprophytic sources) and a total of 60 C. neoformans isolates obtained from AIDS patients with cryptococcal meningitis between October 2001 and April 2002 justify the study of the habitats of these yeasts as probable sources of cryptococcosis in this city.
Resumo:
Ten isolates of Paracoccidioides brasiliensis were examined for differences in virulence in outbred mice intravenously inoculated with the fungus, associated with mycelial morphology, and genetic patterns measured by random amplified polymorphic DNA (RAPD). Virulence was evaluated by viable yeast cell recovery from lungs and demonstration of histopathologic lesions in different organs. The results showed that the isolates presented four virulence degrees: high virulence, intermediate, low and non-virulence. RAPD clustered the isolates studied in two main groups with 56% of genetic similarity. Strains with low virulence, Pb265 or the non-virulent, Pb192, showed glabrous/cerebriform morphology and high genetic similarity (98.7%) when compared to the other isolates studied. The same was observed with Bt79 and Bt83 that shared 96% genetic similarity, cottony colonies and high virulence. The RAPD technique could only discriminate P. brasiliensis isolates according to glabrous/cerebriform or cottony colonies, and also high from low virulence strains. Isolates with intermediate virulence such as Pb18, Pb18B6, Bt32 and Bt56 showed variability in their similarity coefficient suggesting that RAPD was able to detect genetic variability in this fungal specie. Virulence profile of P. brasiliensis demonstrated that both mycelial morphologic extreme phenotypes may be associated with fungal virulence and their in vitro subculture time. Thus, RAPD technique analysis employed in association with virulence, morphologic and immunologic aspects might prove adequate to detect differences between P. brasiliensis isolates.
Resumo:
The mechanisms used by Paracoccidioides brasiliensis to survive into phagocytic cells are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Thus, the objective of this paper was to investigate the role of intracellular iron in regulating the capacity of P. brasiliensis yeast cells to survive within human monocytes. Treatment of monocytes with deferoxamine, an iron chelator, suppressed the survival of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by nonsaturated transferrin (apotransferrin). These results strongly suggest that P. brasiliensis survival in human monocytes is iron dependent.