48 resultados para wall motion
Resumo:
Follicle cultures reproduce in vitro the functional features observed in vivo. In a search for an ideal model, we cultured bovine antral follicle wall sections (FWS) in a serum-free defined medium (DM) known to induce 17β-estradiol (E2) production, and in a nondefined medium (NDM) containing serum. Follicles were sectioned and cultured in NDM or DM for 24 or 48 h. Morphological features were determined by light microscopy. Gene expression of steroidogenic enzymes and follicle-stimulating hormone (FSH) receptor were determined by RT-PCR; progesterone (P4) and E2 concentrations in the media were measured by radioimmunoassay. DM, but not NDM, maintained an FWS morphology in vitro that was similar to fresh tissue. DM also induced an increase in the expression of all steroidogenic enzymes, except FSH receptor, but NDM did not. In both DM and NDM, there was a gradual increase in P4 throughout the culture period; however, P4 concentration was significantly higher in NDM. In both media, E2 concentration was increased at 24 h, followed by a decrease at 48 h. The E2:P4 ratio was higher in DM than in NDM. These results suggest that DM maintains morphological structure, upregulates the expression of steroidogenic enzyme genes, and maintains steroid production with a high E2:P4 ratio in FWS cultures.
Resumo:
The soluble and insoluble cotyledon (SPF-Co and IPF-Co) and tegument (SPF-Te and IPF-Te) cell wall polymer fractions of common beans (Phaseolus vulgaris) were isolated using a chemical-enzymatic method. The sugar composition showed that SPF-Co was constituted of 38.6% arabinose, 23.4% uronic acids, 12.7% galactose, 11.2% xylose, 6.4% mannose and 6.1% glucose, probably derived from slightly branched and weakly bound polymers. The IPF-Co was fractionated with chelating agent (CDTA) and with increasing concentrations of NaOH. The bulk of the cell wall polymers (29.4%) were extracted with 4.0M NaOH and this fraction contained mainly arabinose (55.0%), uronic acid (18.9%), glucose (10.7%), xylose (10.3%) and galactose (3.4%). About 8.7% and 10.6% of the polymers were solubilised with CDTA and 0.01M NaOH respectively and were constituted of arabinose (52.0 and 45.9%), uronic acids (25.8 and 29.8%), xylose (9.6 and 10.2%), galactose (6.1 and 3.9%) and glucose (6.5 and 3.8%). The cell wall polymers were also constituted of small amounts (5.6 and 7.2%) of cellulose (CEL) and of non-extractable cell wall polymers (NECW). About 16.8% and 17.2% of the polymers were solubilised with 0.5 and 1.0M NaOH and contained, respectively, 92.1 and 90.7% of glucose derived from starch (IST). The neutral sugar and polymers solubilization profiles showed that weakly bound pectins are present mainly in SPF-Co (water-soluble), CDTA and 0.01-0.1M NaOH soluble fractions. Less soluble, highly cross-linked pectins were solubilised with 4.0M NaOH. This pectin is arabinose-rich, probably highly branched and has a higher molecular weight than the pectin present in SPF-Co, CDTA and 0.01-0.1M NaOH fractions.
Resumo:
Starch derivatives of taro (Colocasia esculenta L. Schott) and rice were characterized as wall materials of orange oil (d-limonene) by spray drying. Native starches were initially hydrolyzed with HCl and then esterified. Succinylated starches were modified using a conventional method in a slurry and were extruded; whereas, the phosphorylated starches were modified using the extrusion process. Viscosity and solubility of starches reduced after acid hydrolysis, derivatization, and extrusion. The particle size of the wall materials ranged between 20.05 and 31.81 µm. The encapsulation efficiency of the phosphorylated taro, rice, and waxy corn starches was 96.9, 96.8 and 97.1% respectively, and 98.6, 98.1, and 98.8% for succynilated taro, rice, and waxy corn starches, respectively. Starch derivatives of taro and rice could potentially be used as wall materials of orange oil d-limonene.