58 resultados para spore-crystal toxicity
Resumo:
Currently, there is a growing interest in medicinal plants, because of an increased demand for alternate therapies. In this study, the antimicrobial activity and toxicity of the essential oil of Lippia origanoides (L. origanoides) were investigated. The essential oil of L. origanoides was extracted by steam-dragging distillation and its constituents were identified by chromatography coupled with mass spectrometry. Among the 15 compounds identified, the most abundant were carvacrol (29.00%), o-cymene (25.57%), and thymol methyl ether (11.50%). The essential oil was studied in antimicrobial assays to determine the MIC and MBC. The results indicated that a concentration of 120μL/mL of oil was sufficient to inhibit the growth of the following microorganisms: Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923) and Salmonella cholerasuis (ATCC 10708). Acute and chronic toxic effects of orally administered oil were investigated in Wistar rats by using standard methods. Doses of 30, 60 and 120mg/kg of the essential oil did not induce significant changes in weight, behavior or hematological and biochemical parameters in the animals. There were no signs of any histopathological changes to the liver, kidneys or heart of the treated rats, suggesting that Lippia origanoides oil is non-toxic after oral administration in acute or chronic toxicity studies. The results obtained in this study show that the essential oil of L. origanoides has a high safety margin, with no detectable toxic effects in rats treated with doses to 120mg/kg. In addition, L. origanoides oil demonstrated potent antimicrobial activity against S. aureus, E. coli and S. cholerasuis. Based on these findings, this essential oil may have practical application as a veterinary antimicrobial.
Resumo:
This paper discusses the effect of tool wear on surface finish in single-point diamond turning of single crystal silicon. The morphology and topography of the machined surface clearly show the type of cutting edge wear reproduced onto the cutting grooves. Scanning electron microscopy is used in order to correlate the cutting edge damage and microtopography features observed through atomic force microscopy. The possible wear mechanisms affecting tool performance and surface generation during cutting are also discussed. The zero degree rake angle single point diamond tool presented small nicks on the cutting edge. The negative rake angle tools presented more a type of crater wear on the rake face. No wear was detected on flank face of the diamond tools.
Resumo:
Rumohra adiantiformis (Forst.) Ching is a fern (Dryopteridaceae) used in floral arrangements. Spores sterilized in 15% (v/v) solution of commercial sodium hypochlorite for 10 minutes and unsterilized spores were plunged in liquid nitrogen and held for 15 minutes and for 90 days. After the cryogenic treatments, spores were taken out of liquid nitrogen and rapidly thawed out in a water bath or slowly at room temperature and were cultured in Mohr's mineral solution as modified by Dyer, kept at 25 ± 2 ºC and a 16-hours photoperiod. Statistical differences were not observed in the germination of unsterilized spores immersed or not immersed in liquid nitrogen, but when the spores were previously sterilized, a severe inhibition of germination was observed in cryopreserved spores. Faster mean germination time was observed for unsterilized spores cryopreserved in liquid nitrogen for 15 minutes. The germination of spores stored in liquid nitrogen for 90 days reached the maximum percentage after 12 days, while control spores reached their maximum percentage after 16 days. Levels of soluble sugars did not vary among treatments in gametophytes cultivated for 10 weeks after spore inoculation. The number of fronds and the length of the longest frond on sporophytes did not differ statistically among treatments. The relative growth rate of sporophytes grown from cryopreserved and control spores were not statistically different among treatments. Spores of R. adiantiformis immersed in liquid nitrogen for 15 minutes apparently produced phenotypically normal plants.
Resumo:
The crude latex of Crown-of-Thorns (Euphorbia milii var. hislopii) is a potent plant molluscicide and a promising alternative to the synthetic molluscicides used in schistosomiasis control. The present study was undertaken to investigate the embryofeto-toxic potential of E. milii latex. The study is part of a comprehensive safety evaluation of this plant molluscicide. Lyophilized latex (0, 125, 250 and 500 mg/kg body weight) in corn oil was given by gavage to Wistar rats (N = 100) from days 6 to 15 of pregnancy and cesarean sections were performed on day 21 of pregnancy. The numbers of implantation sites, living and dead fetuses, resorptions and corpora lutea were recorded. Fetuses were weighed, examined for external malformations, and fixed for visceral examination, or cleared and stained with Alizarin red S for skeleton evaluation. A reduction of body weight minus uterine weight at term indicated that E. milii latex was maternally toxic over the dose range tested. No latex-induced embryolethality was noted at the lowest dose (125 mg/kg) but the resorption rate was markedly increased at 250 mg/kg (62.5%) and 500 mg/kg (93.4%). A higher frequency of fetuses showing signs of delayed ossification (control: 17.4%; 125 mg/kg: 27.4% and 250 mg/kg: 62.8%; P<0.05 vs control) indicated that fetal growth was retarded at doses ³ 125 mg latex/kg body weight. No increase in the proportion of fetuses with skeletal anomalies was observed at the lowest dose but the incidence of minor skeletal malformations was higher at 250 mg/kg body weight (control: 13.7%; 125 mg/kg: 14.8%; 250 mg/kg: 45.7%; P<0.05 vs control). Since a higher frequency of minor malformations was noted only at very high doses of latex which are embryolethal and maternally toxic, it is reasonable to conclude that this plant molluscicide poses no teratogenic hazard or, at least, that this possibility is of a considerably low order of magnitude
Resumo:
The threat of free radical damage is opposed by coordinated responses that modulate expression of sets of gene products. In mammalian cells, 12 proteins are induced by exposure to nitric oxide (NO) levels that are sub-toxic but exceed the level needed to activate guanylate cyclase. Heme oxygenase 1 (HO-1) synthesis increases substantially, due to a 30- to 70-fold increase in the level of HO-1 mRNA. HO-1 induction is cGMP-independent and occurs mainly through increased mRNA stability, which therefore indicates a new NO-signaling pathway. HO-1 induction contributes to dramatically increased NO resistance and, together with the other inducible functions, constitutes an adaptive resistance pathway that also defends against oxidants such as H2O2. In E. coli, an oxidative stress response, the soxRS regulon, is activated by direct exposure of E. coli to NO, or by NO generated in murine macrophages after phagocytosis of the bacteria. This response is governed by the SoxR protein, a homodimeric transcription factor (17-kDa subunits) containing [2Fe-2S] clusters essential for its activity. SoxR responds to superoxide stress through one-electron oxidation of the iron-sulfur centers, but such oxidation is not observed in reactions of NO with SoxR. Instead, NO nitrosylates the iron-sulfur centers of SoxR both in vitro and in intact cells, which yields a form of the protein with maximal transcriptional activity. Although nitrosylated SoxR is very stable in purified form, the spectroscopic signals for the nitrosylated iron-sulfur centers disappear rapidly in vivo, indicating an active process to reverse or eliminate them.
Resumo:
Auxemma oncocalyx Taub. belongs to the Boraginaceae family and is native to the Brazilian northeast where it is known as "pau-branco". We investigated the ability of the water soluble fraction isolated from the heartwood of A. oncocalyx to inhibit sea urchin egg development. This fraction contains about 80% oncocalyxone A (quinone fraction), a compound known to possess strong cytotoxic and antitumor activities. In fact, the quinone fraction inhibited cleavage in a dose-dependent manner [IC50 of 18.4 (12.4-27.2) µg/ml, N = 6], and destroyed the embryos in the blastula stage [IC50 of 16.2 (13.7-19.2) µg/ml, N = 6]. We suggest that this activity is due to the presence of oncocalyxone A. In fact, these quinones present in A. oncocalyx extract have strong toxicity related to their antimitotic activity.
Resumo:
Toxic cyanobacteria in drinking water supplies can cause serious public health problems. In the present study we analyzed the time course of changes in lung histology in young and adult male Swiss mice injected intraperitoneally (ip) with a cyanobacterial extract containing the hepatotoxic microcystins. Microcystins are cyclical heptapeptides quantified by ELISA method. Ninety mice were divided into two groups. Group C received an injection of saline (300 µl, ip) and group Ci received a sublethal dose of microcystins (48.2 µg/kg, ip). Mice of the Ci group were further divided into young (4 weeks old) and adult (12 weeks old) animals. At 2 and 8 h and at 1, 2, 3, and 4 days after the injection of the toxic cyanobacterial extract, the mice were anesthetized and the trachea was occluded at end-expiration. The lungs were removed en bloc, fixed, sectioned, and stained with hematoxylin-eosin. The percentage of the area of alveolar collapse and the number of polymorphonuclear (PMN) and mononuclear cell infiltrations were determined by point counting. Alveolar collapse increased from C to all Ci groups (123 to 262%) independently of time, reaching a maximum value earlier in young than in adult animals. The amount of PMN cells increased with time of the lesion (52 to 161%). The inflammatory response also reached the highest level earlier in young than in adult mice. After 2 days, PMN levels remained unchanged in adult mice, while in young mice the maximum number was observed at day 1 and was similar at days 2, 3, and 4. We conclude that the toxins and/or other cyanobacterial compounds probably exert these effects by reaching the lung through the blood stream after ip injection.
Resumo:
We measured visual performance in achromatic and chromatic spatial tasks of mercury-exposed subjects and compared the results with norms obtained from healthy individuals of similar age. Data were obtained for a group of 28 mercury-exposed subjects, comprising 20 Amazonian gold miners, 2 inhabitants of Amazonian riverside communities, and 6 laboratory technicians, who asked for medical care. Statistical norms were generated by testing healthy control subjects divided into three age groups. The performance of a substantial proportion of the mercury-exposed subjects was below the norms in all of these tasks. Eleven of 20 subjects (55%) performed below the norms in the achromatic contrast sensitivity task. The mercury-exposed subjects also had lower red-green contrast sensitivity deficits at all tested spatial frequencies (9/11 subjects; 81%). Three gold miners and 1 riverine (4/19 subjects, 21%) performed worse than normal subjects making more mistakes in the color arrangement test. Five of 10 subjects tested (50%), comprising 2 gold miners, 2 technicians, and 1 riverine, performed worse than normal in the color discrimination test, having areas of one or more MacAdam ellipse larger than normal subjects and high color discrimination thresholds at least in one color locus. These data indicate that psychophysical assessment can be used to quantify the degree of visual impairment of mercury-exposed subjects. They also suggest that some spatial tests such as the measurement of red-green chromatic contrast are sufficiently sensitive to detect visual dysfunction caused by mercury toxicity.
Resumo:
Organotin compounds are typical environmental contaminants and suspected endocrine-disrupting substances, which cause irreversible sexual abnormality in female mollusks, called "imposex". However, little is known about the capability of triorganotin compounds, such as tributyltin and triphenyltin, to cause disorders in the sexual development and reproductive functions of mammals, including humans and rodents. Moreover, these compounds can act as potential competitive inhibitors of aromatase enzyme and other steroidogenic enzymes, affecting the reproductive capacity of male and female mammals. In this review, we discuss the cellular, biochemical, and molecular mechanisms by which triorganotin compounds induce adverse effects in the mammalian reproductive function.
Resumo:
Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.
Resumo:
It has been demonstrated that carbon nanotubes (CNTs) associated with sodium hyaluronate (HY-CNTs) accelerate bone repair in the tooth sockets of rats. Before clinical application of HY-CNTs, it is important to assess their biocompatibility. Moreover, cardiac toxicity may be caused by the translocation of these particles to the blood stream. The aim of this study was to evaluate possible changes in cardiovascular function in male Wistar rats whose tooth sockets were treated with either CNTs or HY-CNTs (100 μg/mL, 0.1 mL). Blood pressure and heart rate were monitored in conscious rats 7 days after treatment. Cardiac function was evaluated using the Langendorff perfusion technique. The data showed no changes in blood pressure or heart rate in rats treated with either CNTs or HY-CNTs, and no significant changes in cardiac function were found in any of the groups. To confirm these findings, experiments were conducted in rats injected intraperitoneally with a high concentration of either CNTs or HY-CNTs (0.75 mg/kg). The same parameters were analyzed and similar results were observed. The results obtained 7 days following injection indicate that the administration of low concentrations of CNTs or HY-CNTs directly into tooth sockets did not cause any significant change in cardiovascular function in the rats. The present findings support the possibility of using these biocomposites in humans.
Resumo:
The present study focuses on the neuroprotective effect of glycyrrhizic acid (GA, a major compound separated from Glycyrrhiza Radix, which is a crude Chinese traditional drug) against glutamate-induced cytotoxicity in differentiated PC12 (DPC12) cells. The results showed that GA treatment improved cell viability and ameliorated abnormal glutamate-induced alterations in mitochondria in DPC12 cells. GA reversed glutamate-suppressed B-cell lymphoma 2 levels, inhibited glutamate-enhanced expressions of Bax and cleaved caspase 3, and reduced cytochrome C (Cyto C) release. Exposure to glutamate strongly inhibited phosphorylation of AKT (protein kinase B) and extracellular signal-regulated kinases (ERKs); however, GA pretreatment enhanced activation of ERKs but not AKT. The presence of PD98059 (a mitogen-activated protein/extracellular signal-regulated kinase kinase [MEK] inhibitor) but not LY294002 (a phosphoinositide 3-kinase [PI3K] inhibitor) diminished the potency of GA for improving viability of glutamate-exposed DPC12 cells. These results indicated that ERKs and mitochondria-related pathways are essential for the neuroprotective effect of GA against glutamate-induced toxicity in DPC12 cells. The present study provides experimental evidence supporting GA as a potential therapeutic agent for use in the treatment of neurodegenerative diseases.
Resumo:
The aim of this study was to evaluate the effects of pH, dextrose and yeast extract on the cadmium toxicity on Saccharomyces cerevisiae PE-2. In the first assay, the YED mediums with different pH (2, 3, 4, 5, 6, 7, and 8) containing 0.0 and 0.05 mmol Cd L-1 were inoculated with yeast suspension and incubated at 30 °C for 18 hours. During the anaerobic growth, the biomass concentration was determined. The yeast trehalose content, cell viability, and the growth rate were assessed at the beginning and at the end of the growth stages. In the second assay the YED mediums were diluted to the total, ½, and ¼ content of dextrose and yeast and 0.0 and 0.05 mmol Cd L-1 were added. The pH of the mediums was adjusted to 5. The culture mediums were inoculated and incubated at 30 °C for 18 hours. The yeast growth was not affected by cadmium at high pH, but at low pH the yeast becomes more sensitive to the toxic effect. The yeast susceptibility to cadmium was enhanced by the decrease of yeast extract strength and the increase of dextrose strength.