154 resultados para phosphatase mimic
Resumo:
Schistosomiasis low transmission areas as Venezuela, can be defined as those where the vector exists, the prevalence of active cases is under 25%, individuals with mild intensity of infection predominate and are mostly asymptomatic. These areas are the consequence of effective control programs, however, "silent" epidemiological places are difficult to trace, avoiding the opportune diagnosis and treatment of infected persons. Clinic and abdominal ultrasound have not shown to discriminate infected from uninfected persons in areas where besides Schistosoma mansoni, intestinal parasites are the rule. Under these conditions, serology remains as a very valuable diagnostic tool, since it gives a closer approximation to the true prevalence. In this sense, circumoval precipitin test, ELISA-SEA with sodium metaperiodate, and alkaline phosphatase immunoassay joined to coprology allow the identification of the "schistosomiasis cases". In relation to public health, schistosomiasis has been underestimated by the sanitary authorities and the investment on its control is being transferred to other diseases of major social and political relevance neglecting sanitary efforts and allowing growth of snail population. Some strategies of diagnosis and control should be done before schistosomiasis reemergence occurs in low transmission areas.
Resumo:
This study attempts to investigate the relationship between the hemocytes in the two compartments: circulating peripheral lymph and the connective tissues. The hemocytes are compared with the vertebrate macrophages and constitute the principal line of defense against external aggression. The hemocytes were counted in circulating hemolymph and their phagocytic capability was evaluated in Schistosoma mansoni-infected Biomphalaria glabrata and the results were compared with those obtained from normal intact control snails. Although the number of circulating hemocytes revealed a mild increase in snails at the 6th week of infection, the overall findings were similar and pointed out that the cells in the two compartments are not functionally connected. However, the hemocytes found within the connective tissues of infected snails showed definite ultrastructural differences in the number and disposition of cytoplasmic prolongations and organelles in comparison with the hemocytes from non-infected snails. Histochemically, the staining for acid phosphatase activity served as a marker to hemocytes, sometimes being found in extracellular material at the foci of parasite-hemocyte interactions.
Resumo:
By 2002, dengue virus serotype 1 (DENV-1) and DENV-2 had circulated for more than a decade in Brazil. In 2002, the introduction of DENV-3 in the state of Bahia produced a massive epidemic and the first cases of dengue hemorrhagic fever. Based on the standardized frequency, timing and location of viral isolations by the state's Central Laboratory, DENV-3 probably entered Bahia through its capital, Salvador, and then rapidly disseminated to other cities, following the main roads. A linear regression model that included traffic flow, distance from the capital and DENV-1 circulation (r² = 0.24, p = 0.001) supported this hypothesis. This pattern was not seen for serotypes already in circulation and was not seen for DENV-3 in the following year. Human population density was another important factor in the intensity of viral circulation. Neither DENV-1 nor DENV-2 fit this model for 2001 or 2003. Since the vector has limited flight range and vector densities fail to correlate with intensity of viral circulation, this distribution represents the movement of infected people and to some extent mosquitoes. This pattern may mimic person-to-person spread of a new infection.
Resumo:
Liver biopsy is the gold-standard method to stage fibrosis; however, it is an invasive procedure and is potentially dangerous. The main objective of this study was to evaluate biological markers, such as cytokines IL-13, IFN-γ, TNF-α and TGF-β, platelets, bilirubins (Bil), alanine aminotransferase (ALT) and aspartate aminotransferase (AST), total proteins, γ-glutamil transferase (γ-GT) and alkaline phosphatase (AP), that could be used to predict the severity of hepatic fibrosis in schistosomiasis and hepatitis C (HC) as isolated diseases or co-infections. The following patient groups were selected: HC (n = 39), HC/hepatosplenic schistosomiasis (HSS) (n = 19), HSS (n = 22) and a control group (n = 13). ANOVA and ROC curves were used for statistical analysis. P < 0.05 was considered significant. With HC patients we showed that TNF-α (p = 0.020) and AP (p = 0.005) could differentiate mild and severe fibrosis. With regard to necroinflammatory activity, AST (p = 0.002), γ-GT (p = 0.034) and AP (p = 0.001) were the best markers to differentiate mild and severe activity. In HC + HSS patients, total Bil (p = 0.008) was capable of differentiating between mild and severe fibrosis. In conclusion, our study was able to suggest biological markers that are non-invasive candidates to evaluate fibrosis and necroinflammatory activity in HC and HC + HSS.
Resumo:
Despite effective chemotherapy, schistosomiasis remains the second largest public health problem in the developing world. Currently, vaccination is the new strategy for schistosomiasis control. The presence of common antigenic fractions between Schistosoma mansoni and its intermediate host provides a source for the preparation of a proper vaccine. The objective of this paper is to evaluate the nucleoprotein extracted from either susceptible or resistant snails to protect against schistosomiasis. The vaccination schedule consisted of a subcutaneous injection of 50 µg protein of each antigen followed by another inoculation 15 days later. Analyses of marker enzymes for different cell organelles [succinate dehydrogenase, lactate dehydrogenase (LDH), glucose-6-phosphatase, acid phosphatase and 5'-nucleotidase] were carried out. Energetic parameters (ATP, ADP, AMP, phosphate potentials, inorganic phosphate, amino acids and LDH isoenzymes) were also investigated. The work was extended to record worm and ova counts, oogram determination in the liver and intestine and the histopathological pattern of the liver. The nucleoprotein of susceptible snails showed reduction in worm and ova counts by 70.96% and 51.31%, respectively, whereas the nucleoprotein of resistant snails showed reductions of 9.67% and 16.77%, respectively. In conclusion, we found that the nucleoprotein of susceptible snails was more effective in protecting against schistosomiasis.
Resumo:
Phosphorylation and dephosphorylation of protein tyrosine residues constitutes a major biochemical regulatory mechanism for the cell. We report a transient increase in the total tyrosine phosphorylation of the Aedes aegypti head during the first days after emergence from the pupal stage. This correlates with an initial reduction in total head protein tyrosine phosphatase (PTP) activity. Similarly, phosphotyrosine (pTyr)-containing bands are seen in extracts prepared from both male and female heads and are spread among a variety of structures including the antennae, proboscis and the maxillary palps combined with the proboscis. Also, mosquitoes treated with sodium orthovanadate, a classical PTP inhibitor, show reduced blood-feeding activity and higher head tyrosine phosphorylation levels. These results suggest that pTyr-mediated signalling pathways may play a role in the initial days following the emergence of the adult mosquito from the pupal stage.
Resumo:
Heart tissue inflammation, progressive fibrosis and electrocardiographic alterations occur in approximately 30% of patients infected by Trypanosoma cruzi, 10-30 years after infection. Further, plasma levels of tumour necrosis factor (TNF) and nitric oxide (NO) are associated with the degree of heart dysfunction in chronic chagasic cardiomyopathy (CCC). Thus, our aim was to establish experimental models that mimic a range of parasitological, pathological and cardiac alterations described in patients with chronic Chagas’ heart disease and evaluate whether heart disease severity was associated with increased TNF and NO levels in the serum. Our results show that C3H/He mice chronically infected with the Colombian T. cruzi strain have more severe cardiac parasitism and inflammation than C57BL/6 mice. In addition, connexin 43 disorganisation and fibronectin deposition in the heart tissue, increased levels of creatine kinase cardiac MB isoenzyme activity in the serum and more severe electrical abnormalities were observed in T. cruzi-infected C3H/He mice compared to C57BL/6 mice. Therefore, T. cruzi-infected C3H/He and C57BL/6 mice represent severe and mild models of CCC, respectively. Moreover, the CCC severity paralleled the TNF and NO levels in the serum. Therefore, these models are appropriate for studying the pathophysiology and biomarkers of CCC progression, as well as for testing therapeutic agents for patients with Chagas’ heart disease.
Resumo:
Endothelial dysfunction is a major component of the pathophysiology of septicaemic group B Streptococcus (GBS) infections. Although cytokines have been shown to activate human umbilical vein endothelial cells (HUVECs), the capacity of interferon (IFN)-γ to enhance the microbicidal activity of HUVECs against GBS has not been studied. We report that the viability of intracellular bacteria was reduced in HUVECs activated by IFN-γ. Enhanced fusion of lysosomes with bacteria-containing vacuoles was observed by acid phosphatase and the colocalisation of Rab-5, Rab-7 and lysosomal-associated membrane protein-1 with GBS in IFN-γ-activated HUVECs. IFN-γ resulted in an enhancement of the phagosome maturation process in HUVECs, improving the capacity to control the intracellular survival of GBS.
Resumo:
Properties of a claim loam soil, collected in Aranjuez (Madrid) and enriched with organic matter and microorganisms, were evaluated under controlled temperature and moisture conditions, over a period of three months. The following treatments were carried out: soil (control); soil + 50 t ha-1 of animal manure (E50); soil + 50 t ha-1 of animal manure + 30 L ha-1 of effective microorganisms (E50EM); soil + 30 t ha-1 of the combination of various green crop residues and weeds (RC30) and soil + 30 t ha-1 of the combination of various green crop residues and weeds + 30 L ha-1 of effective microorganisms (RC30EM). Soil samples were taken before and after incubation and their physical, chemical, and microbiological parameters analyzed. Significant increase was observed in the production of exopolysaccharides and basic phosphatase and esterase enzyme activities in the treatments E50EM and RC30EM, in correlation with the humification of organic matter, water retention at field capacity, and the cationic exchange capacity (CEC) of the same treatments. The conclusion was drawn that the incorporation of a mixture of effective microorganisms (EM) intensified the biological soil activity and improved physical and chemical soil properties, contributing to a quick humification of fresh organic matter. These findings were illustrated by the microbiological activities of exopolysaccharides and by alkaline phosphatase and esterase enzymes, which can be used as early and integrated soil health indicators.
Resumo:
Compaction is one of the most destructive factors of soil quality, however the effects on the microbial community and enzyme activity have not been investigated in detail so far. The objective of this study was to evaluate the effects of soil compaction caused by the traffic of agricultural machines on the soil microbial community and its enzyme activity. Six compaction levels were induced by tractors with different weights driving over a Eutrustox soil and the final density was measured. Soil samples were collected after corn from the layers 0-0.10 and 0.10-0.20 m. The compaction effect on all studied properties was evident. Total bacteria counts were reduced significantly (by 22-30 %) and by 38-41 % of nitrifying bacteria in the soil with highest bulk density compared to the control. On the other hand, fungi populations increased 55-86 % and denitrifying bacteria 49-53 %. Dehydrogenase activity decreased 20-34 %, urease 44-46 % and phosphatase 26-28 %. The organic matter content and soil pH decreased more in the 0-0.10 than in the 0.10-0.20 m layer and possibly influenced the reduction of the microbial counts, except denitrifying bacteria, and all enzyme activities, except urease. Results indicated that soil compaction influences the community of aerobic microorganisms and their activity. This effect can alter nutrient cycling and reduce crop yields.
Resumo:
Microbial activity and biochemical properties are important indicators of the impact of organic composting on soil. The objective of this study was to evaluate some indicators of soil microbial and biochemical processes after application of compost (household waste). A Typic Acrustox, sampled at a depth of 10 cm under Cerrado biome vegetation, was evaluated in three treatments: control (soil without organic compost amendment) and soil with two doses of domestic organic compost (10 and 20 g kg-1 soil). The following properties were evaluated: released C (C-CO2): microbial respiration 15 days after incubation; microbial biomass C (MBC); total glucose (TG); metabolic quotient (qCO2); and enzyme activity of β-glucosidase and acid and alkaline phosphatase. The application of household compost, at doses of 10 and 20 g kg-1 Typic Acrustox, resulted in significant gains in microbial activity, organic C and C stock, as evidenced by increased MBC and TG levels. On the other hand, qCO2 decreases indicated greater microbial diversity and more efficient energy use. The addition of compost, particularly the 20 g kg-1 dose, strongly influenced the enzyme β-glucosidase and phosphatase (acid and alkaline). The β-glucosidase activity was significantly increased and acid phosphatase activity increased more than the alkaline. The ratio of β-glucosidase to MBC was greater in the control than in the composted treatments which suggests that there were more enzymes in the control than in the substrate or that the addition of compost induced a great MBC increase.
Resumo:
There are great concerns about degradation of agricultural soils. It has been suggested that cultivating different plant species intercropped with coffee plants can increase microbial diversity and enhance soil sustainability. The objective of this study was to evaluate enzyme activity (urease, arylsulfatase and phosphatase) and alterations in C and N mineralization rates as related to different legume cover crops planted between rows of coffee plants. Soil samples were collected in a field experiment conducted for 10 years in a sandy soil in the North of Paraná State, Brazil. Samples were collected from the 0-10 cm layer, both from under the tree canopy and in-between rows in the following treatments: control, Leucaena leucocephala, Crotalaria spectabilis, Crotalaria breviflora, Mucuna pruriens, Mucuna deeringiana, Arachis hypogaea and Vigna unguiculata. The soil was sampled in four stages of legume cover crops: pre-planting (September), after planting (November), flowering stage (February) and after plant residue incorporation (April), from 1997 to 1999. The green manure species influenced soil enzyme activity (urease, arylsulfatase and phosphatase) and C and N mineralization rates, both under the tree canopy and in-between rows. Cultivation of Leucaena leucocephala increased acid phosphatase and arilsulfatase activity and C and N mineralization both under the tree canopy and in-between rows. Intercropped L. leucocephala increased urease activity under the tree canopy while C. breviflora increased urease activity in-between rows.
Resumo:
Synthetic root exudates were formulated based on the organic acid composition of root exudates derived from the rhizosphere of aseptically grown corn plants, pH of the rhizosphere, and the background chemical matrices of the soil solutions. The synthetic root exudates, which mimic the chemical conditions of the rhizosphere environment where soil-borne metals are dissolved and absorbed by plants, were used to extract metals from sewage-sludge treated soils 16 successive times. The concentrations of Zn, Cd, Ni, Cr, and Cu of the sludge-treated soil were 71.74, 0.21, 15.90, 58.12, and 37.44 mg kg-1, respectively. The composition of synthetic root exudates consisted of acetic, butyric, glutaric, lactic, maleic, propionic, pyruvic, succinic, tartaric, and valeric acids. The organic acid mixtures had concentrations of 0.05 and 0.1 mol L-1 -COOH. The trace elements removed by successive extractions may be considered representative for the availability of these metals to plants in these soils. The chemical speciation of the metals in the liquid phase was calculated; results showed that metals in sludge-treated soils were dissolved and formed soluble complexes with the different organic acid-based root exudates. The most reactive organic acid ligands were lactate, maleate, tartarate, and acetate. The inorganic ligands of chloride and sulfate played insignificant roles in metal dissolution. Except for Cd, free ions did not represent an important chemical species of the metals in the soil rhizosphere. As different metals formed soluble complexes with different ligands in the rhizosphere, no extractor, based on a single reagent would be able to recover all of the potentially plant-available metals from soils; the root exudate-derived organic acid mixtures tested in this study may be better suited to recover potentially plant-available metals from soils than the conventional extractors.
Resumo:
Despite the efficiency of the Shoemaker, McLean, Pratt (SMP) buffer method in estimating soil acidity, the presence of p-nitrophenol and potassium chromate in the solution, both hazardous substances, has caused increasing environmental concerns. The purpose of this study was to test Sikora method (Sikora, 2006) as an alternative to the adapted SMP buffer method, generally used to estimate potential acidity of Southern Brazilian soils. For the test, 21 soils in the South and Cerrado regions of Brazil were sampled. (1) The potential acidity values of these soils range from 35.95 to 4.02 cmol c kg-1 of soil, reflecting a wide acidity variation. The Sikora buffer does not mimic the adapted SMP buffer used in Southern Brazil, since the former has a low ability to distinguish soils with different acidity from each other, probably due to the higher buffer capacity than of the adapted SMP solution.
Resumo:
The application of sewage sludge is a concern because it may affect the quality of organic matter and microbiological and biochemical soil properties. The effects of surface application of sewage sludge to an agricultural soil (at 18 and 36 t ha-1 dry basis) were assessed in one maize (Zea mays L.) growing season. The study evaluated microbial biomass, basal respiration and selected enzymatic activities (catalase, urease, acid and alkaline phosphatase, and β-glucosidase) 230 days after sewage sludge application and infrared spectroscopy was used to assess the quality of dissolved organic matter and humic acids. Sewage sludge applications increased the band intensity assigned to polysaccharides, carboxylic acids, amides and lignin groups in the soil. The organic matter from the sewage sludge had a significant influence on the soil microbial biomass; nevertheless, at the end of the experiment the equilibrium of the soil microbial biomass (defined as microbial metabolic quotient, qCO2) was recovered. Soil urease, acid and alkaline phosphatase activity were strongly influenced by sewage sludge applications.