60 resultados para perikinetic coagulation
Resumo:
This study describes the epidemiological and pathological aspects of an outbreak of acute fasciolosis in cattle in southern Brazil. Fifteen out of 70 three-year-old pregnant cows lost weight in the 30-40 days prior to calving. Clinical signs included diarrhea, weakness, mild anemia and jaundice. Dark yellow fluid in the abdominal cavity was observed at necropsy. Fibrin and clotted blood were adhered to the pericardium and lung, primarily in the diaphragmatic lobes. The liver was enlarged, and the capsular surface was irregular with clear areas and petechiae. At the cut surface, the liver was irregular, firm and edematous, and several hemorrhagic channels could be observed. Areas of fibrosis through the parenchyma and whitish thrombi occluding the great vessels were also observed. The livers of 10 cows that not died were condemned at slaughter for lesions of fasciolosis similar to those observed at necropsy. Microscopically, the liver showed areas of coagulation necrosis, extensive hemorrhages in the streaks or foci and disruption of the parenchyma with neutrophil and eosinophil infiltration. Fibrosis and bile duct proliferation were also observed. Immature Fasciola hepatica flukes were observed in the parenchyma surrounded by degenerated hepatocytes, neutrophils, eosinophils, and hemorrhages. The outbreak occurred on a farm located in an area endemic for fasciolosis, although the acute form of the disease is not common in cattle in this region. It is likely that the cows were infected by F. hepatica metacercariae released in the late fall or early spring in the rice stubble where the herd was grazing prior to calving. Although mortality due to fasciolosis in cattle is infrequent, outbreaks can occur and treatments that are effective in both the immature and adult forms of the parasite should be administered to prevent economic losses.
Resumo:
Abstract: Platelet-rich plasma (PRP) is a product easy and inxpesnsive, and stands out to for its growth factors in tissue repair. To obtain PRP, centrifugation of whole blood is made with specific time and gravitational forces. Thus, the present work aimed to study a method of double centrifugation to obtain PRP in order to evaluate the effective increase of platelet concentration in the final product, the preparation of PRP gel, and to optimize preparation time of the final sample. Fifteen female White New Zealand rabbits underwent blood sampling for the preparation of PRP. Samples were separated in two sterile tubes containing sodium citrate. Tubes were submitted to the double centrifugation protocol, with lid closed and 1600 revolutions per minute (rpm) for 10 minutes, resulting in the separation of red blood cells, plasma with platelets and leucocytes. After were opened and plasma was pipetted and transferred into another sterile tube. Plasma was centrifuged again at 2000rpm for 10 minutes; as a result it was split into two parts: on the top, consisting of platelet-poor plasma (PPP) and at the bottom of the platelet button. Part of the PPP was discarded so that only 1ml remained in the tube along with the platelet button. This material was gently agitated to promote platelets resuspension and activated when added 0.3ml of calcium gluconate, resulting in PRP gel. Double centrifugation protocol was able to make platelet concentration 3 times higher in relation to the initial blood sample. The volume of calcium gluconate used for platelet activation was 0.3ml, and was sufficient to coagulate the sample. Coagulation time ranged from 8 to 20 minutes, with an average of 17.6 minutes. Therefore, time of blood centrifugation until to obtain PRP gel took only 40 minutes. It was concluded that PRP was successfully obtained by double centrifugation protocol, which is able to increase the platelet concentration in the sample compared with whole blood, allowing its use in surgical procedures. Furthermore, the preparation time is appropriate to obtain PRP in just 40 minutes, and calcium gluconate is able to promote the activation of platelets.
Resumo:
This article describes the presence of two new forms of a thrombin-like enzyme, both with apparent molecular masses of 38 kDa, in Bothrops atrox venom. Both share the ability to cleave fibrinogen into fibrin and to digest casein. Both present identical Km on the substrate BApNA. Their N-terminal amino acid sequences are identical for 26 residues, sharing 80% homology with batroxobin and flavoxobin. Two groups of monoclonal antibodies (mAbs) raised against the purified enzyme forms recognized different epitopes of the putative corresponding enzymes present in B. atrox crude venom. On Western blotting analysis of B. atrox crude venom, mAbs 5DB2C8, 5AA10 and 5CF11, but not mAbs 6CC5 and 6AD2-G5, revealed two or more protein bands ranging from 25 to 38 kDa. By immunoprecipitation assays, the 6AD2-G5 mAb was able to precipitate protein bands of 36-38 kDa from B. atrox, B. leucurus, B. pradoi, B. moojeni, B. jararaca and B. neuwiedii crude venoms. Fibrinogen-clotting activity was inhibited when the same venom specimens were pre-incubated with mAb 6AD2-G5, except for B. jararaca and B. neuwiedii.
Resumo:
The anticlotting and antithrombotic activities of heparin, heparan sulfate, low molecular weight heparins, heparin and heparin-like compounds from various sources used in clinical practice or under development are briefly reviewed. Heparin isolated from shrimp mimics the pharmacological activities of low molecular weight heparins. A heparan sulfate from Artemia franciscana and a dermatan sulfate from tuna fish show a potent heparin cofactor II activity. A heparan sulfate derived from bovine pancreas has a potent antithrombotic activity in an arterial and venous thrombosis model with a negligible activity upon the serine proteases of the coagulation cascade. It is suggested that the antithrombotic activity of heparin and other antithrombotic agents is due at least in part to their action on endothelial cells stimulating the synthesis of an antithrombotic heparan sulfate.
Resumo:
Loxoscelism, the term used to describe lesions and clinical manifestations induced by brown spider's venom (Loxosceles genus), has attracted much attention over the last years. Brown spider bites have been reported to cause a local and acute inflammatory reaction that may evolve to dermonecrosis (a hallmark of envenomation) and hemorrhage at the bite site, besides systemic manifestations such as thrombocytopenia, disseminated intravascular coagulation, hemolysis, and renal failure. The molecular mechanisms by which Loxosceles venoms induce injury are currently under investigation. In this review, we focused on the latest reports describing the biological and physiopathological aspects of loxoscelism, with reference mainly to the proteases recently described as metalloproteases and serine proteases, as well as on the proteolytic effects triggered by L. intermedia venom upon extracellular matrix constituents such as fibronectin, fibrinogen, entactin and heparan sulfate proteoglycan, besides the disruptive activity of the venom on Engelbreth-Holm-Swarm basement membranes. Degradation of these extracellular matrix molecules and the observed disruption of basement membranes could be related to deleterious activities of the venom such as loss of vessel and glomerular integrity and spreading of the venom toxins to underlying tissues.
Resumo:
The venom of Lonomia obliqua caterpillar may induce a hemorrhagic syndrome in humans, and blood incoagulability by afibrinogenemia when intravenously injected in laboratory animals. The possible antithrombotic and thrombolytic activities of L. obliqua caterpillar bristle extract (LOCBE) were evaluated in this study. The minimal intravenous dose of the extract necessary to induce afibrinogenemia and anticoagulation was 3.0 and 10.0 µg protein/kg body weight for rabbits and rats, respectively. In rabbits, this dose induced total blood incoagulability for at least 10 h and did not reduce the weight of preformed venous thrombi, in contrast to streptokinase (30,000 IU/kg). In rats, pretreatment with 5.0 and 10.0 µg/kg LOCBE prevented the formation of thrombi induced by venous stasis or by injury to the venous endothelium. The dose of 5.0 µg/kg LOCBE did not modify blood coagulation assay parameters but increased bleeding time and decreased plasma factor XIII concentration. When the extract was administered to rats at the dose of 10.0 µg/kg, the blood was totally incoagulable for 6 h. These data show that LOCBE was effective in preventing experimental venous thrombosis in rats, justifying further studies using purified fractions of the extract to clarify the mechanisms of this effect.
Resumo:
Tissue factor is a transmembrane procoagulant glycoprotein and a member of the cytokine receptor superfamily. It activates the extrinsic coagulation pathway, and induces the formation of a fibrin clot. Tissue factor is important for both normal homeostasis and the development of many thrombotic diseases. A wide variety of cells are able to synthesize and express tissue factor, including monocytes, granulocytes, platelets and endothelial cells. Tissue factor expression can be induced by cell surface components of pathogenic microorganisms, proinflammatory cytokines and membrane microparticles released from activated host cells. Tissue factor plays an important role in initiating thrombosis associated with inflammation during infection, sepsis, and organ transplant rejection. Recent findings suggest that tissue factor can also function as a receptor and thus may be important in cell signaling. The present minireview will focus on the role of tissue factor in the pathogenesis of septic shock, infectious endocarditis and invasive aspergillosis, as determined by both in vivo and in vitro models.
Resumo:
Fucan is a term used to denote a family of sulfated L-fucose-rich polysaccharides which are present in the extracellular matrix of brown seaweed and in the egg jelly coat of sea urchins. Plant fucans have several biological activities, including anticoagulant and antithrombotic, related to the structural and chemical composition of polysaccharides. We have extracted sulfated polysaccharides from the brown seaweed Dictyota menstrualis by proteolytic digestion, followed by separation into 5 fractions by sequential acetone precipitation. Gel electrophoresis using 0.05 M 1,3-diaminopropane-acetate buffer, pH 9.0, stained with 0.1% toluidine blue, showed the presence of sulfated polysaccharides in all fractions. The chemical analyses demonstrated that all fractions are composed mainly of fucose, xylose, galactose, uronic acid, and sulfate. The anticoagulant activity of these heterofucans was determined by activated partial thromboplastin time (APTT) using citrate normal human plasma. Only the fucans F1.0v and F1.5v showed anticoagulant activity. To prolong the coagulation time to double the baseline value in the APTT, the required concentration of fucan F1.0v (20 µg/ml) was only 4.88-fold higher than that of the low molecular weight heparin Clexane® (4.1 µg/ml), whereas 80 µg/ml fucan 1.5 was needed to obtain the same effect. For both fucans this effect was abolished by desulfation. These polymers are composed of fucose, xylose, uronic acid, galactose, and sulfate at molar ratios of 1.0:0.8:0.7:0.8:0.4 and 1.0:0.3:0.4:1.5:1.3, respectively. This is the fist report indicating the presence of a heterofucan with higher anticoagulant activity from brown seaweed.
Resumo:
We determined the neutralizing activity of 12 ethanolic extracts of plants against the edema-forming, defibrinating and coagulant effects of Bothrops asper venom in Swiss Webster mice. The material used consisted of the leaves and branches of Bixa orellana (Bixaceae), Ficus nymphaeifolia (Moraceae), Struthanthus orbicularis (Loranthaceae) and Gonzalagunia panamensis (Rubiaceae); the stem barks of Brownea rosademonte (Caesalpiniaceae) and Tabebuia rosea (Bignoniaceae); the whole plant of Pleopeltis percussa (Polypodiaceae) and Trichomanes elegans (Hymenophyllaceae); rhizomes of Renealmia alpinia (Zingiberaceae), Heliconia curtispatha (Heliconiaceae) and Dracontium croatii (Araceae), and the ripe fruit of Citrus limon (Rutaceae). After preincubation of varying amounts of each extract with either 1.0 µg venom for the edema-forming effect or 2.0 µg venom for the defibrinating effect, the mixture was injected subcutaneously (sc) into the right foot pad or intravenously into the tail, respectively, to groups of four mice (18-20 g). All extracts (6.2-200 µg/mouse) partially neutralized the edema-forming activity of venom in a dose-dependent manner (58-76% inhibition), with B. orellana, S. orbicularis, G. panamensis, B. rosademonte, and D. croatii showing the highest effect. Ten extracts (3.9-2000 µg/mouse) also showed 100% neutralizing ability against the defibrinating effect of venom, and nine prolonged the coagulation time induced by the venom. When the extracts were administered either before or after venom injection, the neutralization of the edema-forming effect was lower than 40% for all extracts, and none of them neutralized the defibrinating effect of venom. When they were administered in situ (sc at the same site 5 min after venom injection), the neutralization of edema increased for six extracts, reaching levels up to 64% for C. limon.
Resumo:
Sickle cell disease (SCD) is one of the most common inherited diseases in the world and the patients present notorious clinical heterogeneity. It is known that patients with SCD present activation of the blood coagulation and fibrinolytic systems, especially during vaso-occlusive crises, but also during the steady state of the disease. We determined if the presence of the factor V gene G1691A mutation (factor V Leiden), the prothrombin gene G20210A variant, and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism may be risk factors for vascular complications in individuals with SCD. We studied 53 patients with SCD (60% being women), 29 with SS (sickle cell anemia; 28 years, range: 13-52 years) and 24 with SC (sickle-hemoglobin C disease; 38.5 years, range: 17-72 years) hemoglobinopathy. Factor V Leiden, MTHFR C677T polymorphism, and prothrombin G20210A variant were identified by PCR followed by further digestion of the PCR product with specific endonucleases. The following vascular complications were recorded: stroke, retinopathy, acute thoracic syndrome, and X-ray-documented avascular necrosis. Only one patient was heterozygous for factor V Leiden (1.8%) and there was no prothrombin G20210A variant. MTHFR 677TT polymorphism was detected in 1 patient (1.8%) and the heterozygous form 677TC was observed in 18 patients (34%, 9 with SS and 9 with SC disease), a prevalence similar to that reported by others. No association was detected between the presence of the MTHFR 677T allele and other genetic modulation factors, such as alpha-thalassemia, ß-globin gene haplotype and fetal hemoglobin. The presence of the MTHFR 677T allele was associated with the occurrence of vascular complications in SCD, although this association was not significant when each complication was considered separately. In conclusion, MTHFR C677T polymorphism might be a risk factor for vascular complications in SCD.
Resumo:
In the present review, we describe a systematic study of the sulfated polysaccharides from marine invertebrates, which led to the discovery of a carbohydrate-based mechanism of sperm-egg recognition during sea urchin fertilization. We have described unique polymers present in these organisms, especially sulfated fucose-rich compounds found in the egg jelly coat of sea urchins. The polysaccharides have simple, linear structures consisting of repeating units of oligosaccharides. They differ among the various species of sea urchins in specific patterns of sulfation and/or position of the glycosidic linkage within their repeating units. These polysaccharides show species specificity in inducing the acrosome reaction in sea urchin sperm, providing a clear-cut example of a signal transduction event regulated by sulfated polysaccharides. This distinct carbohydrate-mediated mechanism of sperm-egg recognition coexists with the bindin-protein system. Possibly, the genes involved in the biosynthesis of these sulfated fucans did not evolve in concordance with evolutionary distance but underwent a dramatic change near the tip of the Strongylocentrotid tree. Overall, we established a direct causal link between the molecular structure of a sulfated polysaccharide and a cellular physiological event - the induction of the sperm acrosome reaction in sea urchins. Small structural changes modulate an entire system of sperm-egg recognition and species-specific fertilization in sea urchins. We demonstrated that sulfated polysaccharides - in addition to their known function in cell proliferation, development, coagulation, and viral infection - mediate fertilization, and respond to evolutionary mechanisms that lead to species diversity.
Resumo:
A correlation between cancer and prothrombotic states has long been described. More recently, a number of studies have focused on the procoagulant mechanisms exhibited by tumor cells. In the present study, we dissected the molecular mechanisms responsible for the procoagulant activity of MV3, a highly aggressive human melanoma cell line. It was observed that tumor cells strongly accelerate plasma coagulation as a result of: i) expression of the blood clotting initiator protein, a tissue factor, as shown by flow cytometry and functional assays (factor Xa formation in the presence of cells and factor VIIa), and ii) direct activation of prothrombin to thrombin by cells, as evidenced by hydrolysis of the synthetic substrate, S-2238, and the natural substrate, fibrinogen. This ability was highly potentiated by the addition of exogenous factor Va, which functions as a co-factor for the enzyme factor Xa. In contrast, prothrombin activation was not observed when cells were previously incubated with DEGR-factor Xa, an inactive derivative of the enzyme. Moreover, a monoclonal antibody against bovine factor Xa reduced the prothrombin-converting activity of tumor cells. In conclusion, the data strongly suggest that MV3 cells recruit factor Xa from the culture medium, triggering an uncommon procoagulant mechanism.
Resumo:
Thromboelastography (TEG®) provides a functional evaluation of coagulation. It has characteristics of an ideal coagulation test for trauma, but is not frequently used, partially due to lack of both standardized techniques and normal values. We determined normal values for our population, compared them to those of the manufacturer and evaluated the effect of gender, age, blood type, and ethnicity. The technique was standardized using citrated blood, kaolin and was performed on a Haemoscope 5000 device. Volunteers were interviewed and excluded if pregnant, on anticoagulants or having a bleeding disorder. The TEG® parameters analyzed were R, K, α, MA, LY30, and coagulation index. All volunteers outside the manufacturer’s normal range underwent extensive coagulation investigations. Reference ranges for 95% for 118 healthy volunteers were R: 3.8-9.8 min, K: 0.7-3.4 min, α: 47.8-77.7 degrees, MA: 49.7-72.7 mm, LY30: -2.3-5.77%, coagulation index: -5.1-3.6. Most values were significantly different from those of the manufacturer, which would have diagnosed coagulopathy in 10 volunteers, for whom additional investigation revealed no disease (81% specificity). Healthy women were significantly more hypercoagulable than men. Aging was not associated with hypercoagulability and East Asian ethnicity was not with hypocoagulability. In our population, the manufacturer’s normal values for citrated blood-kaolin had a specificity of 81% and would incorrectly identify 8.5% of the healthy volunteers as coagulopathic. This study supports the manufacturer’s recommendation that each institution should determine its own normal values before adopting TEG®, a procedure which may be impractical. Consideration should be given to a multi-institutional study to establish wide standard values for TEG®.
Resumo:
The effects of Ringer lactate, 6% hydroxyethyl starch (HES) (130/0.4) or 4% succinylated gelatin solutions on perioperative coagulability were measured by thromboelastography (TEG). Seventy-five patients (ASA I-III) who were to undergo major orthopedic procedures performed under epidural anesthesia were included in the study. Patients were randomly divided into three groups of 25 each for the administration of maintenance fluids: group RL (Ringer lactate), group HES (6% HES 130/0.4), and group JEL (4% gelofusine solution). Blood samples were obtained during the perioperative period before epidural anesthesia (t1, baseline), at the end of the surgery (t2), and 24 h after the operation (t3). TEG data, reaction time (R), coagulation time (K), angle value (α), and maximum amplitude (MA) were recorded. TEG parameters changed from normal values in all patients. In group RL, R and K times decreased compared to perioperative values while the α angle and MA increased (P < 0.05). In group HES, R and K times increased, however, the α angle and MA decreased (P < 0.05). In group JEL, R time increased (P < 0.05), but K time, α angle and MA did not change significantly. In the present study, RL, 6% HES (130/0.4) and 4% JEL solutions caused changes in the coagulation system of all patients as measured by TEG, but these changes remained within normal limits.
Resumo:
The aim of this work was to make tofu from soybean cultivar BRS 267 under different processing conditions in order to evaluate the influence of each treatment on the product quality. A fractional factorial 2(5-1) design was used, in which independent variables (thermal treatment, coagulant concentration, coagulation time, curd cutting, and draining time) were tested at two different levels. The response variables studied were hardness, yield, total solids, and protein content of tofu. Polynomial models were generated for each response. To obtain tofu with desirable characteristics (hardness ~4 N, yield 306 g tofu.100 g-1 soybeans, 12 g proteins.100 g-1 tofu and 22 g solids.100 g-1 tofu), the following processing conditions were selected: heating until boiling plus 10 minutes in water bath, 2% dihydrated CaSO4 w/w, 10 minutes coagulation, curd cutting, and 30 minutes draining time.