65 resultados para particulate fraction
Resumo:
The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU) were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.
Resumo:
The formal calibration procedure of a phase fraction meter is based on registering the outputs resulting from imposed phase fractions at known flow regimes. This can be straightforwardly done in laboratory conditions, but is rarely the case in industrial conditions, and particularly for on-site applications. Thus, there is a clear need for less restrictive calibration methods regarding to the prior knowledge of the complete set of inlet conditions. A new procedure is proposed in this work for the on-site construction of the calibration curve from total flown mass values of the homogeneous dispersed phase. The solution is obtained by minimizing a convenient error functional, assembled with data from redundant tests to handle the intrinsic ill-conditioned nature of the problem. Numerical simulations performed for increasing error levels demonstrate that acceptable calibration curves can be reconstructed, even from total mass measured within a precision of up to 2%. Consequently, the method can readily be applied, especially in on-site calibration problems in which classical procedures fail due to the impossibility of having a strict control of all the input/output parameters.
Resumo:
The effect of hypoxia on the levels of glycogen, glucose and lactate as well as the activities and binding of glycolytic and associated enzymes to subcellular structures was studied in brain, liver and white muscle of the teleost fish, Scorpaena porcus. Hypoxia exposure decreased glucose levels in liver from 2.53 to 1.70 µmol/g wet weight and in muscle led to its increase from 3.64 to 25.1 µmol/g wet weight. Maximal activities of several enzymes in brain were increased by hypoxia: hexokinase by 23%, phosphoglucoisomerase by 47% and phosphofructokinase (PFK) by 56%. However, activities of other enzymes in brain as well as enzymes in liver and white muscle were largely unchanged or decreased during experimental hypoxia. Glycolytic enzymes in all three tissues were partitioned between soluble and particulate-bound forms. In several cases, the percentage of bound enzymes was reduced during hypoxia; bound aldolase in brain was reduced from 36.4 to 30.3% whereas glucose-6-phosphate dehydrogenase fell from 55.7 to 28.7% bound. In muscle PFK was reduced from 57.4 to 41.7% bound. Oppositely, the proportion of bound aldolase and triosephosphate isomerase increased in hypoxic muscle. Phosphoglucomutase did not appear to occur in a bound form in liver and bound phosphoglucomutase disappeared in muscle during hypoxia exposure. Anoxia exposure also led to the disappearance of bound fructose-1,6-bisphosphatase in liver, whereas a bound fraction of this enzyme appeared in white muscle of anoxic animals. The possible function of reversible binding of glycolytic enzymes to subcellular structures as a regulatory mechanism of carbohydrate metabolism is discussed.
Resumo:
The recombinant heat shock protein (18 kDa-hsp) from Mycobacterium leprae was studied as a T-epitope model for vaccine development. We present a structural analysis of the stability of recombinant 18 kDa-hsp during different processing steps. Circular dichroism and ELISA were used to monitor protein structure after thermal stress, lyophilization and chemical modification. We observed that the 18 kDa-hsp is extremely resistant to a wide range of temperatures (60% of activity is retained at 80ºC for 20 min). N-Acylation increased its ordered structure by 4% and decreased its ß-T1 structure by 2%. ELISA demonstrated that the native conformation of the 18 kDa-hsp was preserved after hydrophobic modification by acylation. The recombinant 18 kDa-hsp resists to a wide range of temperatures and chemical modifications without loss of its main characteristic, which is to be a source of T epitopes. This resistance is probably directly related to its lack of organization at the level of tertiary and secondary structures.
Resumo:
Auxemma oncocalyx Taub. belongs to the Boraginaceae family and is native to the Brazilian northeast where it is known as "pau-branco". We investigated the ability of the water soluble fraction isolated from the heartwood of A. oncocalyx to inhibit sea urchin egg development. This fraction contains about 80% oncocalyxone A (quinone fraction), a compound known to possess strong cytotoxic and antitumor activities. In fact, the quinone fraction inhibited cleavage in a dose-dependent manner [IC50 of 18.4 (12.4-27.2) µg/ml, N = 6], and destroyed the embryos in the blastula stage [IC50 of 16.2 (13.7-19.2) µg/ml, N = 6]. We suggest that this activity is due to the presence of oncocalyxone A. In fact, these quinones present in A. oncocalyx extract have strong toxicity related to their antimitotic activity.
Resumo:
Cissampelos sympodialis Eichl species are used in folk medicine for the treatment of asthma, arthritis and rheumatism. In the present study, we investigated the immunomodulatory effect of an aqueous fraction of a 70% (v/v) ethanol extract of C. sympodialis leaves on B lymphocyte function. The hydroalcoholic extract inhibited the in vitro proliferative response of resting B cells induced by LPS (IC50 = 17.2 µg/ml), anti-delta-dextran (IC50 = 13.9 µg/ml) and anti-IgM (IC50 = 24.3 µg/ml) but did not affect the anti-MHC class II antibody-stimulated proliferative response of B cell blasts obtained by stimulation with IL-4 and anti-IgM. Incubation with the hydroalcoholic extract used at 50 µg/ml induced a 700% increase in intracellular cAMP levels. IgM secretion by resting B cells (obtained from normal mice) and polyclonally activated B cells (obtained from Trypanosoma cruzi-infected animals) was inhibited by the hydroalcoholic extract. The latter were more sensitive to the hydroalcoholic extract since 6.5 µg/ml induced a 20% inhibition in the response of cells from normal mice while it inhibited the response of B cells from infected animals by 75%. The present data indicate that the alcoholic extract of C. sympodialis inhibited B cell function through an increase in intracellular cAMP levels. The finding that the hydroalcoholic extract inhibited immunoglobulin secretion suggests a therapeutic use for the extract from C. sympodialis in conditions associated with unregulated B cell function and enhanced immunoglobulin secretion. Finally, the inhibitory effect of the hydroalcoholic extract on B cells may indicate an anti-inflammatory effect of this extract.
Resumo:
An alkali-insoluble fraction 1 (F1), which contains mainly ß-glucan isolated from the cell wall of Histoplasma capsulatum, induces eosinophil recruitment into the peritoneal cavity of mice. The present study was carried out to determine the participation of interleukin-5 (IL-5) in this process. Inbred C57BL/6 male mice weighing 15-20 g were treated ip with 100 µg of anti-IL-5 monoclonal antibody (TRFK-5, N = 7) or an isotype-matched antibody (N = 7), followed by 300 µg F1 in 1 ml PBS ip 24 h later. Controls (N = 5) received only 1 ml PBS. Two days later, cells from the peritoneal cavity were harvested by injection of 3 ml PBS and total cell counts were determined using diluting fluid in a Neubauer chamber. Differential counts were performed using Rosenfeld-stained cytospin preparations. The F1 injection induced significant (P < 0.01) leukocyte recruitment into the peritoneal cavity (8.4 x 10(6) cells/ml) when compared with PBS alone (5.5 x 10(6) cells/ml). Moreover, F1 selectively (P < 0.01) induced eosinophil recruitment (1 x 10(6) cells/ml) when compared to the control group (0.07 x 10(6) cells/ml). Treatment with TRFK-5 significantly (P < 0.01) inhibited eosinophil recruitment (0.18 x 10(6) cells/ml) by F1 without affecting recruitment of mononuclear cells or neutrophils. We conclude that the F1 fraction of the cell wall of H. capsulatum induces peritoneal eosinophilia by an IL-5-dependent mechanism. Depletion of this cytokine does not have effect on the recruitment of other cell types induced by F1.
Resumo:
Carpotroche brasiliensis is a native Brazilian tree belonging to the Oncobeae tribe of Flacourtiaceae. The oil extracted from its seeds contains as major constituents the same cyclopentenyl fatty acids hydnocarpic (40.5%), chaulmoogric (14.0%) and gorlic (16.1%) acids found in the better known chaulmoogra oil prepared from the seeds of various species of Hydnocarpus (Flacourtiaceae). These acids are known to be related to the pharmacological activities of these plants and to their use as anti-leprotic agents. Although C. brasiliensis oil has been used in the treatment of leprosy, a disease that elicits inflammatory responses, the anti-inflammatory and analgesic activities of the oil and its constituents have never been characterized. We describe the anti-inflammatory and antinociceptive activities of C. brasiliensis seed oil in acute and chronic models of inflammation and in peripheral and central nociception. The mixture of acids from C. brasiliensis administered orally by gavage showed dose-dependent (10-500 mg/kg) anti-inflammatory activity in carrageenan-induced rat paw edema, inhibiting both the edema by 30-40% and the associated hyperalgesia. The acid fraction (200 mg/kg) also showed significant antinociceptive activity in acetic acid-induced constrictions (57% inhibition) and formalin-induced pain (55% inhibition of the second phase) in Swiss mice. No effects were observed in the hot-plate (100 mg/kg; N = 10), rota-road (200 mg/kg; N = 9) or adjuvant-induced arthritis (50 mg/kg daily for 7 days; N = 5) tests, the latter a chronic model of inflammation. The acid fraction of the seeds of C. brasiliensis which contains cyclopentenyl fatty acids is now shown to have significant oral anti-inflammatory and peripheral antinociceptive effects.
Resumo:
Vernonia scorpioides has been widely used in Brazil to treat skin problems and chronic wounds, such as ulcers of the lower limbs and diabetic lesions. In the present study, we investigated the effect of a dichloromethane (DCM) fraction of V. scorpioides leaf extract on Ehrlich ascitic and solid tumor-bearing mice. The animals were treated once a day with the DCM fraction at a concentration of 5 mg/kg, administered ip during and after the development of the tumor. The lifespan, weight, number and type of leukocytes, number of tumor cells, volume of solid and ascitic tumors were measured. The development of the tumor with pre-treated tumor cells in vitro with the DCM fraction (5 mg/kg) was analyzed and the animals were sacrificed after 7 days. The DCM fraction (5 mg/kg) totally inhibited tumor development when in direct contact with tumor cells, and also ascitic tumor development with in vitro treatment or when administered ip, in loco (after 7 days). Animals treated with the DCM fraction increased their lifespan ca. 2 weeks and maintained their body weight for 30 days. When applied immediately after the inoculation of the tumor cells in vivo, it totally abolished tumor development, with tumor development only decreasing when treatment was started 3 days after the tumor challenge. These data suggest an antineoplastic activity of the fraction. Oral or ip administration of DCM fraction (5 mg/kg) for 7 days did not reduce the solid tumor volume. The cytotoxic activity described here differs from the conventional immune suppressing profile of standard chemotherapy because it increases neutrophil influx to the peritoneal cavity. These results show that, besides exhibiting a tumoricidal activity, the DCM fraction also exhibits inflammatory activity.
Resumo:
Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a) determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b) determine if intermittent short-term exposures (every 4 days) induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM) from vehicles (N = 30) for 6 or 20 continuous hours, or for intermittent (5 h) periods during 20 h for 4 consecutive days or to filtered air (PM <10 µm; N = 30). Rats continuously breathing polluted air for 20 h (P-20) showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 ± 0.51;P-20: 5.01 x 105 ± 0.81; P < 0.05) and in lipid peroxidation ([MDA] nmol/mg protein: C-20: 0.148 ± 0.01; P-20: 0.226 ± 0.02; P < 0.05). Shorter exposure (6 h) and intermittent 5-h exposures over a period of 4 days did not cause significant changes in leukocytes. Lipid damage resulting from 20-h exposure to particulate air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.
Resumo:
Agaricus blazei Murill is a native Brazilian mushroom which functions primarily as an anticancer substance in transplanted mouse tumors. However, the mechanism underlying this function of A. blazei Murill remains obscure. The present study was carried out to investigate the effect of fraction FA-2-b-ß, an RNA-protein complex isolated from A. blazei Murill, on human leukemia HL-60 cells in vitro. Typical apoptotic characteristics were determined by morphological methods using DNA agarose gel electrophoresis and flow cytometry. The growth suppressive effect of fraction FA-2-b-ß on HL-60 cells in vitro occurred in a dose- (5-80 µg/mL) and time-dependent (24-96 h) manner. The proliferation of HL-60 cells (1 x 10(5) cells/mL) treated with 40 µg/mL of fraction FA-2-b-ß for 24-96 h and with 5-80 µg/mL for 96 h resulted in inhibitory rates ranging from 8 to 54.5%, and from 4.9 to 86.3%, respectively. Both telomerase activity determined by TRAP-ELISA and mRNA expression of the caspase-3 gene detected by RT-PCR were increased in HL-60 cells during fraction FA-2-b-ß treatment. The rate of apoptosis correlated negatively with the decrease of telomerase activity (r = 0.926, P < 0.05), but correlated positively with caspase-3 mRNA expression (r = 0.926, P < 0.05). These data show that fraction FA-2-b-ß can induce HL-60 cell apoptosis and that the combined effect of down-regulation of telomerase activity and up-regulation of mRNA expression of the caspase-3 gene could be the primary mechanism of induction of apoptosis. These findings provide strong evidence that fraction FA-2-b-ß could be of interest for the clinical treatment of acute leukemia.
Resumo:
The continuous intravenous administration of isotopic bicarbonate (NaH13CO2) has been used for the determination of the retention of the 13CO2 fraction or the 13CO2 recovered in expired air. This determination is important for the calculation of substrate oxidation. The aim of the present study was to evaluate, in critically ill patients with sepsis under mechanical ventilation, the 13CO2 recovery fraction in expired air after continuous intravenous infusion of NaH13CO2 (3.8 µmol/kg diluted in 0.9% saline in ddH2O). A prospective study was conducted on 10 patients with septic shock between the second and fifth day of sepsis evolution (APACHE II, 25.9 ± 7.4). Initially, baseline CO2 was collected and indirect calorimetry was also performed. A primer of 5 mL NaH13CO2 was administered followed by continuous infusion of 5 mL/h for 6 h. Six CO2 production (VCO2) measurements (30 min each) were made with a portable metabolic cart connected to a respirator and hourly samples of expired air were obtained using a 750-mL gas collecting bag attached to the outlet of the respirator. 13CO2 enrichment in expired air was determined with a mass spectrometer. The patients presented a mean value of VCO2 of 182 ± 52 mL/min during the steady-state phase. The mean recovery fraction was 0.68 ± 0.06%, which is less than that reported in the literature (0.82 ± 0.03%). This suggests that the 13CO2 recovery fraction in septic patients following enteral feeding is incomplete, indicating retention of 13CO2 in the organism. The severity of septic shock in terms of the prognostic index APACHE II and the sepsis score was not associated with the 13CO2 recovery fraction in expired air.
Resumo:
Since the anti-inflammatory, antidiabetic and hypolipidemic effects of soy isoflavones may be mediated by activation of peroxisome proliferator-activated receptors (PPAR), the present study investigated whether the methanolic fractions obtained from soybean seeds (E1) and soybean seed coats with hypocotyls (E2) could influence PPARα, PPARγ and PPARβ/δ transcriptional activity. The isoflavones from E1 and E2 were quantified by HPLC analysis. E1 and E2 were rich in isoflavones (daidzin, glycitin, genistin, malonyldaidzin, malonylglycitin, malonylgenistin, daidzein, glycitein, and genistein). Moreover, E1 and E2 showed no evidence of genetically modified material containing the gene CP4 EPSPS. To investigate PPAR transcriptional activity, human promonocytic U-937 cells were treated with E1 and E2 (200, 400, 800, and 1600 µg/mL), positive controls or vehicle. Data are reported as fold-activation of the luciferase reporter driven by the PPAR-responsive element. Dose-response analysis revealed that E1 and E2 induced the transcriptional activity of PPARα (P < 0.001), with activation comparable to that obtained with 0.1 mM bezafibrate (positive control) at 1600 µg/mL (4-fold) and 800 µg/mL (9-fold), respectively. In addition, dose-response analysis revealed that E1 and E2 activated PPARβ/δ (P < 0.05), and the activation at 800 µg/mL (4- and 9-fold, respectively) was comparable to that of 0.1 mM bezafibrate (positive control). However, no effect on PPARγ was observed. Activation of PPARα is consistent with the lipid-lowering activity of soy isoflavones in vivo, but further studies are needed to determine the physiological significance of PPARβ/δ activation.
Resumo:
We investigated the vascular responses and the blood pressure reducing effects of different fractions obtained from the methanol extract of Loranthus ferrugineus Roxb. (F. Loranthaceae). By means of solvent-solvent extraction, L. ferrugineus methanol extract (LFME) was successively fractionated with chloroform, ethyl acetate and n-butanol. The ability of these LFME fractions to relax vascular smooth muscle against phenylephrine (PE)- and KCl-induced contractions in isolated rat aortic rings was determined. In another set of experiments, LFME fractions were tested for blood pressure lowering activity in anesthetized adult male Sprague-Dawley rats (250-300 g, 14-18 weeks). The n-butanol fraction of LFME (NBF-LFME) produced a significant concentration-dependent inhibition of PE- and KCl-induced aortic ring contractions compared to other fractions. Moreover, NBF-LFME had a significantly higher relaxant effect against PE- than against high K+-induced contractions. In anesthetized Sprague-Dawley rats, NBF-LFME significantly lowered blood pressure in a dose-dependent manner and with a relatively longer duration of action compared to the other fractions. HPLC, UV and IR spectra suggested the presence of terpenoid constituents in both LFME and NBF-LFME. Accordingly, we conclude that NBF-LFME is the most potent fraction producing a concentration-dependent relaxation in vascular smooth muscle in vitro and a dose-dependent blood pressure lowering activity in vivo. The cardiovascular effects of NBF-LFME are most likely attributable to its terpenoid content.