134 resultados para myelin oligodendrocyte glycoprotein
Resumo:
The Fucose-Mannose Ligand (FML) of Leishmania donovani is a complex glycoproteic fraction. Its potential use as a tool for diagnosis of human visceral leishmaniasis was tested with human sera from Natal, Rio Grande do Norte, Brazil. The FML-ELISA test, showed 100% sensitivity and 96% specificity, identifying patients with overt kala-azar (p < 0.001, when compared to normal sera), and subjects with subclinical infection. More than 20% apparently healthy subjects with positive reaction to FML developed overt kala-azar during the following 10 months. In the screening of human blood donnors, a prevalence of 5% of sororeactive subjects was detected, attaining 17% in a single day. The GP36 glycoprotein of FHL is specifically reconized by human kala-azar sera. The immunoprotective effect of FML on experimental L. donovanii infection was tested in swiss albino mice. The protection scheemes included three weekly doses of FML, supplemented or not with saponin by the subcutaneous or intraperitoneal routes and challenge with 2x 10(7) amastigotes of Leishmania donovani. An enhancement of 80.0 % in antibody response (p<0.001) and reduction of 85.5 % parasite liver burden (p<0.001) was detected in animals immunized with FML saponin, unrespectivety of the immunization route.
Resumo:
We analyzed the kinetics of cytokine production by mononuclear cells from 17 patients who had been treated for paracoccidioidomycosis, using the stimulus of gp43 peptide groups (43kDa glycoprotein of Paracoccidioides brasiliensis) at 0.1 and 1µM, gp43 (1µg/ml) and crude Paracoccidioides brasiliensis antigen (PbAg; 75µg/ml). IFN-gamma production was a maximum at 144 hours in relation to the G2 and G8 peptide groups at 1µM and was greatest at 144 hours when stimulated by gp43 and by PbAg. The maximum TNF-alpha production was at 144 hours for the G2 group (0.1µM) and for gp43. IL-10 production was highest after 48 and 72 hours for G7 and G6 at 1µM, respectively. We also suggest the best time for analysis of IL4 production. These results may contribute towards future studies with gp43 peptides and encourage further investigations with the aim of understanding the influence of these peptides on the production of inflammatory and regulatory cytokines.
Resumo:
Since von Hibler gas grangrene has been considered a local infection with systemic symptoms. When we consider some of the symptoms of gas gangrene, those of the central nervous system are in evidence beeing similar to those observed in tetanus and botulism. It is likely therefore that gas gangrene intoxication and the disease caused by it are of neurotoxic nature. With Almeida Cardoso and Araujo Costa we were able to demonstrate lesions in the central nervous system of animals wich had been intoxicated during a short period of time as well in those with intoxication of longer duration. In acute intoxication, after intracreneal inoculation, severe alterations were seen within 20 to 30 minutes in the cells of the spinal cord, specially in motor cells and also in some cells of the posterior cord and spinal bulb. The changes consisted in chromatolysis and picnosis and were more marked in animals intoxicated with Clostridium histolyticum and Cl. perfringens toxines. Myelin sheet was unchanged. in delayed intoxication with greater and repeated dosis lesions of the central nervous system (brain, protuberance, medula ablongate and medula spinal) were observed. They consisted in hyperemia, perivascular hemorrages in white and grey substances, oedema, accumulation of glia cells with enlarged and hyperchromatic nuclei, fragmentation of the myelin sheet and balooning degeneration of the described by Spielmeyer. Such changes were found in the swollen and hemorragic zones and were generally similar to those found in the acute type of Spielmeyer 9acute swelling and liquefation). Other changes found sometimes were agglutination of Nissl's bodies, sinous appearence of the dendritic endings, shruncken cells of Spielmeyer and neuronophagy around "ghost" cells. In short the changes...
Resumo:
A retrovirus infecting a Brazilian AIDS patient was isolated and characterized in terms of its reactivity with sera from individuals infected with human immunodeficiency viruses 1 and 2 (HIV-1 and HIV-2). The Western blot analysis revealed that the Brazilian isolate is very similar to the well characterized HIV-1 strain. The serum of the patient from whom the virus was isolated did not react with the 140 kDa envelope glycoprotein specific for HIV-2.
Resumo:
Receptors for interleukin 2 (IL-2) esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta]) chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s) and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.
Resumo:
The cercarial glycocalyx and schistosomulum surface contains a number of glycoproteins which are expressed in very variable amounts within a parasite population. Tunicamycin inhibits glycoprotein synthesis of schistosomula if the parasites are incubated for 24hr with the drug (10µg ml[raised to the power of -1]). An unexpected increase in lectin binding to the parasite surface was observed but no other changes were detected. Schistosomula treated in this way did not develop in the host past the lung stage. Ultraviolet irradiation (400µW min cm[raised to the power of-2]) also inhibited glycoprotein synthesis. Synthesis of other proteins, and in particular heat shock proteins, were also inhibited. Sera from mice (NIH strain) infected with irradiated cercariae contained antibodies which bound to normal schistosomula with lower affinity than to irradiated parasites. This is evidence that irradiation modifies the surface and secreted glycoproteins of schistosomula, so they are processed in a different way to normal glycoproteins by the host's immune system. The effects of irradiation on heat shock protein synthesis may allow the parasite to release a variety of proteins and glycoproteins in abnormal conformations. This may explain the enhanced immunogenicity of irradiated cercariae.
Resumo:
The existence of mammals and reptilia with a natural resistance to snake venoms is known since a long time. This fact has been subjected to the study by several research workers. Our experiments showed us that in the marsupial Didelphis marsupialis, a mammal highly resistant to the venom of Bothrops jararaca, and other Bothrops venoms, has a genetically origin protein, a alpha-1, acid glycoprotein, now highly purified, with protective action in mice against the jararaca snake venom.
Resumo:
Schistosomula of Schistosoma mansoni became resistant to antibody-dependent complement damage in vitro after pre-incubation with normal human erythrocytes (NHuE) whatever the ABO or Rh blood group. Resistant parasites were shown to acquire host decay accelerating factor (DAF) , a 70 kDa glycoprotein attached to the membrane of NHue by a GPI anchor. IgG2a mAb anti-human DAF (IA10) immunoprecipitated a 70 kDa molecule from 125I-labeled schistosomula pre-incubated with NHuE and inhibited their resistance to complement-dependent killing in vtro. Incubationof schistosomula with erytrocytes from patients with paroxsimal nocturnal hemoglobinuria (PNHE) or SRBC, wich are DAF-deficient, did not protect the parasites from complement lesion. Supernatant of 100,000 x g collected from NHuE incubated for 24 h in defined medium was shown to contain a soluble form of DAF and to protect schistosomula from complement killing. Schistosomula treated with trypsin before incubation with NHuE ghosts did not become resistant to complement damage. On the other hand, pre-treatment with chymotrypsin did not interfere with the acquisition of resistance by the schistosomula. These results indicate that, in vitro, NHuE DAF can be transferred to schistosomula in a soluble form and that the binding of this molecule to the parasite surface is dependent upon trypsin-sensitive chymotrypsin-insensitive polipeptide(s) present on the surface of the worm.
Resumo:
Immunoglobulin (Ig) isotype (IgG, IgG1, IgG2, IgG3, IgG4, IgM, IgD and IgE) levels were investigated, both pre- and post-treatment with praziquantel (PZQ), in 43 adults and children chronically infected with Schistosoma mansoni , by means of a two-site, isotype-specific immunoenzymometric assay. The patients were classified as responders (R) or non-responders (NR) on the basis of their circumoval precipitin test (COPT) results 12 months after treatment. In comparison with controls, pre-treatment R children showed significantly higher levels of IgG, IgG1, IgG4 (p<0.001) and IgE (p<0.01), and diminished IgG2 (p<0.05), while NR children showed significantly elevated levels only of IgE (p<0.05). Twelve months after therapy, R children maintained significantly lower levels of IgG2, but showed significantly decreased levels of IgG, IgG1, IgG4, and IgE, while the Ig isotype profile of NR children was unaltered. Adult R and NR showed similar isotype profiles before chemotherapy, with the exception of significantly elevated IgM levels in R. Twelve months after therapy, R adults showed significantly decreased levels of IgG, IgG1, and IgG4, while NR adults showed only diminshed IgG4 levels. These results reveal different Ig isotype profiles in untreated adults and children chronically infected with S. mansoni. The results further show that the pre-treatment Ig isotype profile may be significantly modified after an effective R to chemotherapy, accounted for by down regulation of the IgG1 isotype in association with negative seroconversion of the COPT in R patients. The COPT reaction has been associated with the highly specific egg glycoprotein antigen w1, which shows a significant reduction in reactivity six months after treatment. IgG1 may thus play a main role in the response against the w1 antigen.
Resumo:
We have demonstrated that Leishmania spp. grown as promastigotes, are sensitive to the K+ channel inhibitors 4-aminopyridine and glibenclamide. Their host cells, the macrophages, are not affected by similar concentrations of the drugs. We have also initiated the molecular characterization of the mechanisms involved in the development of drug resistance to glibenclamide by the parasite. Therefore, we have selected experimentally and begun to characterize the Venezuelan Leishmania (Leishmania) strain, NR resistant to glibenclamide [NR(Gr)]. The analysis of genomic DNA evidenced the existence of a fragment which apparently is amplified in NR(Gr). The fragment recognized by the pgpA probe, related to the Leishmania P-glycoprotein family and which was originally isolated from L. tarentolae, showed a size polymorfism between the sensitive and the resistant strain. These results suggest that the development of resistance to glibenclamide in the strain NR(Gr) might be associated with the amplification of the ltpgpA or related gene(s)
Resumo:
An experimental model for acquired and congenital ocular toxoplasmosis as well as a model to induce experimental autoimmune uveitis (EAU) was investigated in Calomys callosus. Toxoplasma gondii, ME-49 strain, was used to infect males and pregnant- and not pregnant-females while S-antigen, a major glycoprotein of the retinal photoreceptor cell, was used to induce EAU. The ocular lesions elicited by T. gondii were characterized by the presence of cysts, free tachyzoites and inflammatory cells in the retina or related tissues. In the congenital form, 40% of the fetus presented ocular lesions, i.e., presence of cysts in the retina, vitreous, and extra-retinal tissues. In the acquired form, 75% of the females and 50% of the males presented unilateral ocular cysts both at 21 and 47 days post-infection. It was also demonstrated that S-antigen was not uveitogenic in the C. callosus model. No lesion was observed in the animals exclusively immunized with this retinal component, even when jacalin was used as additional adjuvant for polyclonal response to the retinal antigen. It can be concluded that C. callosus may constitute in a promising model for study both acquired and congenital ocular toxoplasmosis, particularly when it is important to make sure that a non autoimmune process is involved in the genesis of the ocular infection.
Resumo:
A 72 kDa Trypanosoma cruzi glycoprotein recognized by the 164C11 monoclonal antibody (IgM isotype) was purified by preparative electrophoresis. The antigenic preparation obtained, named TcY 72, was used to immunize C57Bl/10 mice. The following results were observed after immunization: (1) induction of higher titres of IgG than IgM antibodies, as evaluated by indirect immunofluorescence; (2) significant DTH after injection of epimastigotes in mice footpads; (3) peak parasitemia in immunized mice was significantly reduced and animals were negative by 13 days post-infection, although the mice still succumb to infection; (4) the phenotypic analysis of spleen cell populations showed a decrease in the CD4/CD8 ratio in immunized mice. Taken as a whole, these findings indicate that TcY 72 is immunogenic and potentially important for protective immunity.
Resumo:
Antigenic variation in Trypanosoma brucei is a highly sophisticated survival strategy involving switching between the transcription of one of an estimated thousand variant surface glycoprotein (VSG) genes. Switching involves either transcriptional control, resulting in switching between different VSG expression sites; or DNA rearrangement events slotting previously inactive VSG genes into an active VSG expression site. In recent years, considerable progress has been made in techniques allowing us to genetically modify infective bloodstream form trypanosomes. This is allowing us to reengineer VSG expression sites, and look at the effect on the mechanisms subsequently used for antigenic variation. We can now begin a dissection of a highly complicated survival strategy mediated by many different mechanisms operating simultaneously.
Resumo:
Trypanosomosis is the most economically important disease constraint to livestock productivity in sub-Saharan Africa and has significant negative impact in other parts of the world. Livestock are an integral component of farming systems and thus contribute significantly to food and economic security in developing countries. Current methods of control for trypanosomosis are inadequate to prevent the enormous socioeconomic losses resulting from this disease. A vaccine has been viewed as the most desirable control option. However, the complexity of the parasite's antigenic repertoire made development of a vaccine based on the variable surface glycoprotein coat unlikely. As a result, research is now focused on identifying invariant trypanosome components as potential targets for interrupting infection or infection-mediated disease. Immunosuppression appears to be a nearly universal feature of infection with African trypanosomes and thus may represent an essential element of the host-parasite relationship, possibly by reducing the host's ability to mount a protective immune response. Antibody, T cell and macrophage/monocyte responses of infected cattle are depressed in both trypanosusceptible and trypanotolerant breeds of cattle. This review describes the specific T cell and monocyte/macrophage functions that are altered in trypanosome-infected cattle and compares these disorders with those that have been described in the murine model of trypanosomosis. The identification of parasite factors that induce immunosuppression and the mechanisms that mediate depressed immune responses might suggest novel disease intervention strategies.