63 resultados para lethal toxicity
Resumo:
Chromium toxicity affects redox reactions within plant cells, generating detrimental reactive oxygen species. Glutathione is an antioxidant peptide and also a substrate for the production of phytochelatins, which are chelating peptides reported to mitigate Cr3+ toxicity in plants. In this study, Brachiaria brizantha (B. brizantha) and Brachiaria ruziziensis (B. ruziziensis) seedlings were evaluated for physiological responses and glutathione production following the addition of zero or 5 mg L-1 Cr3+ to the nutrient solution. Glutathione levels were determined by colorimetric analysis at 412 nm using 5,5'-dithio-bis(2-nitrobenzoic acid) as a chromophore reagent and recovery with glutathione reductase (with evaluations at days 10 and 20 of continuous growth). The assessments were carried out in a completely randomized design with 2 authentic replications, and arranged in a 23 factorial. Cr3+ caused an average increase of 0.76 mg g-1 in the initial glutathione content. However, by day 20 there was an average reduction of 3.63 mg g-1. Chromium-affected physiological detrimental responses, albeit detected in both species, were less-pronounced in B. ruziziensis, along with a much higher level of glutathione. This study indicates that B. ruziziensis has a greater tolerance for chromium toxicity than B. brizantha, and that glutathione is likely to be involved in the mitigation of chromium stress in B. ruziziensis.
Resumo:
O ZLCV é um tospovírus encontrado com freqüência causando severos danos em cucurbitáceas. Nesse trabalho avaliaram-se os danos causados pelo ZLCV em abobrinha de moita 'Caserta', em campo na ESALQ/USP, Piracicaba-SP, onde esse vírus é freqüente. Plantas obtidas pela semeadura direta foram monitoradas periodicamente quanto à infecção pelo ZLCV por meio dos sintomas e por PTA-ELISA. Monitorou-se ainda a contaminação com Papaya ringspot virus - type W e Zucchini yellow mosaic virus, desconsiderando a produção dessas plantas. As plantas foram agrupadas em função da época de aparecimento dos sintomas do ZLCV, avaliando a produção de frutos comerciais (FC) e não comerciais (FNC) de cada grupo e comparando com a de plantas que permaneceram sem sintomas até o final do experimento. As plantas que apresentaram sintomas até os 23 dias após a emergência (DAE) não produziram qualquer tipo de frutos. FC foram colhidos de plantas que apresentaram sintomas a partir dos 42 DAE. Mesmo assim, houve redução de 78,5 % na produção de FC. Plantas que mostraram sintomas por ocasião da última colheita (55 DAE) apresentaram redução na produção de FC de 9,6 %. A infecção com o ZLCV até o início da frutificação inviabiliza a produção de FC de abobrinha de moita 'Caserta'.
Resumo:
Asclepias mellodora St. Hil. is a native acute toxic species frequent in the grasslands of the Buenos Aires province, Argentina, whose toxicity had not been assessed until now. This study evaluates the minimal lethal dose of this species for sheep, and the possibility of microscopically recognizing its fragments in gastrointestinal contents as a complementary diagnostic tool in necropsies. Three Frisona sheep (average LW=55±4.5 kg) were dosed via an esophageal tube with each one of the following doses of asclepias: 8.0, 5.0, 2.0 and 0.8 g DM.kg LW-1. Sheep poisoned with the three higher doses died between 10 and 85 h after intoxication, but those receiving the lower dose did not. During necropsies we: 1) determined the dry weight of the contents of rumen+reticulum, omasum+abomasum, and large intestine, 2) estimated the percentages of asclepias fragments by microanalysis correcting for digestion effects on fragment recognition, and 3) calculated the total mass of asclepias in the digestive tract of each animal. For the three higher doses, the mass of asclepias identified in the total ingesta was 12.3±3.4% of the amount supplied, possibly because of the strong diarrhea its ingestion produced. The percentages of asclepias in rumen+reticulum did not differ from the average quantified for the entire tract. The results of this study indicate that the minimal lethal doses of asclepias for sheep is between 2.0 and 0.8g DM·kg LW-1, and that the microhistological analysis of the rumen+reticulum, the easiest region to sample, can be used to confirm the ingestion of this toxic species, although the estimated percentage will be not a good estimator of the ingested percentage.
Resumo:
Fresh or thawed Perreyia flavipes larvae were ground and mixed with water and orally ad ministered to sheep. At 5mg/kg, neither clinical nor enzymatic changes were observed. Unique do ses of 7.5 and 10mg/kg induced characteristic clinical signs of Perreyia sp. larvae poisoning, increased GGT and AST values, and decreased glycemic curves. However, doses of 5, 10, and 15mg/kg repeated at 30 or 15 days intervals caused no disease and mild disease followed by death, respectively. These fin dings indicate that these animals probably developed some degree of tolerance to the toxins in P. flavipes larvae. Ultrastru ctural examination of liver revealed proliferation of the smooth endoplasmic reticulum in the hepatocytes, which may be associated with an increased ability to metabolize toxins and could consequently lead to the tolerance observed in the present study. Further investigations may elucidate whether such tolerance effects could be applied as a control measure for P. flavipes poioning or other hepatotoxic diseases. In addition, clinicopathological findings were discussed.
Resumo:
Currently, there is a growing interest in medicinal plants, because of an increased demand for alternate therapies. In this study, the antimicrobial activity and toxicity of the essential oil of Lippia origanoides (L. origanoides) were investigated. The essential oil of L. origanoides was extracted by steam-dragging distillation and its constituents were identified by chromatography coupled with mass spectrometry. Among the 15 compounds identified, the most abundant were carvacrol (29.00%), o-cymene (25.57%), and thymol methyl ether (11.50%). The essential oil was studied in antimicrobial assays to determine the MIC and MBC. The results indicated that a concentration of 120μL/mL of oil was sufficient to inhibit the growth of the following microorganisms: Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923) and Salmonella cholerasuis (ATCC 10708). Acute and chronic toxic effects of orally administered oil were investigated in Wistar rats by using standard methods. Doses of 30, 60 and 120mg/kg of the essential oil did not induce significant changes in weight, behavior or hematological and biochemical parameters in the animals. There were no signs of any histopathological changes to the liver, kidneys or heart of the treated rats, suggesting that Lippia origanoides oil is non-toxic after oral administration in acute or chronic toxicity studies. The results obtained in this study show that the essential oil of L. origanoides has a high safety margin, with no detectable toxic effects in rats treated with doses to 120mg/kg. In addition, L. origanoides oil demonstrated potent antimicrobial activity against S. aureus, E. coli and S. cholerasuis. Based on these findings, this essential oil may have practical application as a veterinary antimicrobial.
Resumo:
The possibility of producing neutralizing antibodies against the lethal effects of scorpion toxins was evaluated in the mouse model by immunization with an immunogen devoid of toxicity. A toxic fraction (5 mg) from the venom of the scorpion Tityus serrulatus was entrapped in sphingomyelin-cholesterol liposomes. The liposomes were treated for 1 h at 37oC with a 1% (w/w) trypsin solution in 0.2 M sodium carbonate buffer, pH 8.3. This treatment led to a strong reduction in venom toxicity. Immunization was performed as follows: mice were injected sc with 20 µg of the liposome-entrapped toxic fraction on days 1 and 21 and a final injection (20 µg) was administered ip on day 36. After injection of the immunogen, all mice developed an IgG response which was shown to be specific for the toxic antigen. The antibodies were measured 10 days after the end of the immunization protocol. In an in vitro neutralization assay we observed that pre-incubation of a lethal dose of the toxic fraction with immune serum strongly reduced its toxicity. In vivo protection assays showed that mice with anti-toxin antibodies could resist the challenge with the toxic fraction, which killed, 30 min after injection, all non-immune control mice
Resumo:
The crude latex of Crown-of-Thorns (Euphorbia milii var. hislopii) is a potent plant molluscicide and a promising alternative to the synthetic molluscicides used in schistosomiasis control. The present study was undertaken to investigate the embryofeto-toxic potential of E. milii latex. The study is part of a comprehensive safety evaluation of this plant molluscicide. Lyophilized latex (0, 125, 250 and 500 mg/kg body weight) in corn oil was given by gavage to Wistar rats (N = 100) from days 6 to 15 of pregnancy and cesarean sections were performed on day 21 of pregnancy. The numbers of implantation sites, living and dead fetuses, resorptions and corpora lutea were recorded. Fetuses were weighed, examined for external malformations, and fixed for visceral examination, or cleared and stained with Alizarin red S for skeleton evaluation. A reduction of body weight minus uterine weight at term indicated that E. milii latex was maternally toxic over the dose range tested. No latex-induced embryolethality was noted at the lowest dose (125 mg/kg) but the resorption rate was markedly increased at 250 mg/kg (62.5%) and 500 mg/kg (93.4%). A higher frequency of fetuses showing signs of delayed ossification (control: 17.4%; 125 mg/kg: 27.4% and 250 mg/kg: 62.8%; P<0.05 vs control) indicated that fetal growth was retarded at doses ³ 125 mg latex/kg body weight. No increase in the proportion of fetuses with skeletal anomalies was observed at the lowest dose but the incidence of minor skeletal malformations was higher at 250 mg/kg body weight (control: 13.7%; 125 mg/kg: 14.8%; 250 mg/kg: 45.7%; P<0.05 vs control). Since a higher frequency of minor malformations was noted only at very high doses of latex which are embryolethal and maternally toxic, it is reasonable to conclude that this plant molluscicide poses no teratogenic hazard or, at least, that this possibility is of a considerably low order of magnitude
Resumo:
The threat of free radical damage is opposed by coordinated responses that modulate expression of sets of gene products. In mammalian cells, 12 proteins are induced by exposure to nitric oxide (NO) levels that are sub-toxic but exceed the level needed to activate guanylate cyclase. Heme oxygenase 1 (HO-1) synthesis increases substantially, due to a 30- to 70-fold increase in the level of HO-1 mRNA. HO-1 induction is cGMP-independent and occurs mainly through increased mRNA stability, which therefore indicates a new NO-signaling pathway. HO-1 induction contributes to dramatically increased NO resistance and, together with the other inducible functions, constitutes an adaptive resistance pathway that also defends against oxidants such as H2O2. In E. coli, an oxidative stress response, the soxRS regulon, is activated by direct exposure of E. coli to NO, or by NO generated in murine macrophages after phagocytosis of the bacteria. This response is governed by the SoxR protein, a homodimeric transcription factor (17-kDa subunits) containing [2Fe-2S] clusters essential for its activity. SoxR responds to superoxide stress through one-electron oxidation of the iron-sulfur centers, but such oxidation is not observed in reactions of NO with SoxR. Instead, NO nitrosylates the iron-sulfur centers of SoxR both in vitro and in intact cells, which yields a form of the protein with maximal transcriptional activity. Although nitrosylated SoxR is very stable in purified form, the spectroscopic signals for the nitrosylated iron-sulfur centers disappear rapidly in vivo, indicating an active process to reverse or eliminate them.
Resumo:
Auxemma oncocalyx Taub. belongs to the Boraginaceae family and is native to the Brazilian northeast where it is known as "pau-branco". We investigated the ability of the water soluble fraction isolated from the heartwood of A. oncocalyx to inhibit sea urchin egg development. This fraction contains about 80% oncocalyxone A (quinone fraction), a compound known to possess strong cytotoxic and antitumor activities. In fact, the quinone fraction inhibited cleavage in a dose-dependent manner [IC50 of 18.4 (12.4-27.2) µg/ml, N = 6], and destroyed the embryos in the blastula stage [IC50 of 16.2 (13.7-19.2) µg/ml, N = 6]. We suggest that this activity is due to the presence of oncocalyxone A. In fact, these quinones present in A. oncocalyx extract have strong toxicity related to their antimitotic activity.
Resumo:
Toxic cyanobacteria in drinking water supplies can cause serious public health problems. In the present study we analyzed the time course of changes in lung histology in young and adult male Swiss mice injected intraperitoneally (ip) with a cyanobacterial extract containing the hepatotoxic microcystins. Microcystins are cyclical heptapeptides quantified by ELISA method. Ninety mice were divided into two groups. Group C received an injection of saline (300 µl, ip) and group Ci received a sublethal dose of microcystins (48.2 µg/kg, ip). Mice of the Ci group were further divided into young (4 weeks old) and adult (12 weeks old) animals. At 2 and 8 h and at 1, 2, 3, and 4 days after the injection of the toxic cyanobacterial extract, the mice were anesthetized and the trachea was occluded at end-expiration. The lungs were removed en bloc, fixed, sectioned, and stained with hematoxylin-eosin. The percentage of the area of alveolar collapse and the number of polymorphonuclear (PMN) and mononuclear cell infiltrations were determined by point counting. Alveolar collapse increased from C to all Ci groups (123 to 262%) independently of time, reaching a maximum value earlier in young than in adult animals. The amount of PMN cells increased with time of the lesion (52 to 161%). The inflammatory response also reached the highest level earlier in young than in adult mice. After 2 days, PMN levels remained unchanged in adult mice, while in young mice the maximum number was observed at day 1 and was similar at days 2, 3, and 4. We conclude that the toxins and/or other cyanobacterial compounds probably exert these effects by reaching the lung through the blood stream after ip injection.
Resumo:
Leishmaniasis, Chagas' disease and schistosomiasis (bilharzia) are parasitic diseases with wide distribution on the American continent, affecting millions of people. In the present study, biological assays for antiprotozoal and molluscicidal activities were carried out with ethanolic extracts of plant species from the Brazilian part of the Upper Paraná River. Crude extracts were obtained by percolation with absolute ethanol from the leaves of Cayaponia podantha Cogn., Nectandra falcifolia (Nees) Castiglioni and Paullinia elegans Cambess., as well as from the aerial parts of Helicteres gardneriana St. Hil. & Naud. and Melochia arenosa Benth., all belonging to genera used in folk medicine. Trypanocidal activity of plants was assayed on epimastigote cultures in liver infusion tryptose. Anti-leishmanial activity was determined over cultures of promastigote forms of the parasite in Schneider's Drosophila medium. Microscopic countings of parasites, after their incubation in the presence of different concentrations of the crude extracts, were made in order to determine the percentage of growth inhibition. C. podantha and M. arenosa, at a concentration of 10 µg/mL, showed 90.4 ± 11.52 and 88.9 ± 2.20% growth inhibition, respectively, of epimastigote forms of Trypanosoma cruzi, whereas N. falcifolia demonstrated an LD50 of 138.5 µg/mL against promastigote forms of Leishmania (Viannia) braziliensis. Regarding molluscicidal activity, the acute toxicity of the extracts on Biomphalaria glabrata was evaluated by a rapid screening procedure. M. arenosa was 100% lethal to snails at 200 µg/mL and showed an LD50 of 143 µg/mL. Screening of plant extracts represents a continuous effort to find new antiparasitic drugs.
Resumo:
We measured visual performance in achromatic and chromatic spatial tasks of mercury-exposed subjects and compared the results with norms obtained from healthy individuals of similar age. Data were obtained for a group of 28 mercury-exposed subjects, comprising 20 Amazonian gold miners, 2 inhabitants of Amazonian riverside communities, and 6 laboratory technicians, who asked for medical care. Statistical norms were generated by testing healthy control subjects divided into three age groups. The performance of a substantial proportion of the mercury-exposed subjects was below the norms in all of these tasks. Eleven of 20 subjects (55%) performed below the norms in the achromatic contrast sensitivity task. The mercury-exposed subjects also had lower red-green contrast sensitivity deficits at all tested spatial frequencies (9/11 subjects; 81%). Three gold miners and 1 riverine (4/19 subjects, 21%) performed worse than normal subjects making more mistakes in the color arrangement test. Five of 10 subjects tested (50%), comprising 2 gold miners, 2 technicians, and 1 riverine, performed worse than normal in the color discrimination test, having areas of one or more MacAdam ellipse larger than normal subjects and high color discrimination thresholds at least in one color locus. These data indicate that psychophysical assessment can be used to quantify the degree of visual impairment of mercury-exposed subjects. They also suggest that some spatial tests such as the measurement of red-green chromatic contrast are sufficiently sensitive to detect visual dysfunction caused by mercury toxicity.
Resumo:
Organotin compounds are typical environmental contaminants and suspected endocrine-disrupting substances, which cause irreversible sexual abnormality in female mollusks, called "imposex". However, little is known about the capability of triorganotin compounds, such as tributyltin and triphenyltin, to cause disorders in the sexual development and reproductive functions of mammals, including humans and rodents. Moreover, these compounds can act as potential competitive inhibitors of aromatase enzyme and other steroidogenic enzymes, affecting the reproductive capacity of male and female mammals. In this review, we discuss the cellular, biochemical, and molecular mechanisms by which triorganotin compounds induce adverse effects in the mammalian reproductive function.
Resumo:
Seed coat is a specialized maternal tissue that interfaces the embryo and the external environment during embryogenesis, dormancy and germination. In addition, it is the first defensive barrier against penetration by pathogens and herbivores. Here we show that Albizia lebbeck seed coat dramatically compromises the oviposition, eclosion and development of the bruchid Callosobruchus maculatus. Dietary supplementation of bruchid larvae with A. lebbeck seed coat flour causes severe weight loss and reduces survival. By means of protein purification, mass spectrometry and bioinformatic analyses, we show that chitin-binding vicilins are the main source of A. lebbeck tegumental toxicity to C. maculatus. At concentrations as low as 0.1%, A. lebbeck vicilins reduce larval mass from 8.1 ± 1.7 (mass of control larvae) to 1.8 ± 0.5 mg, which corresponds to a decrease of 78%. Seed coat toxicity constitutes an efficient defense mechanism, hindering insect predation and preventing embryo damage. We hypothesize that A. lebbeck vicilins are good candidates for the genetic transformation of crop legumes to enhance resistance to bruchid predation.