63 resultados para lambda-carrageenan
Resumo:
The aim of the present study was to evaluate renal and liver distribution of two monoclonal immunoglobulin light chains. The chains were purified individually from the urine of patients with multiple myeloma and characterized as lambda light chains with a molecular mass of 28 kDa. They were named BJg (high amount of galactose residues exposed) and BJs (sialic acid residues exposed) on the basis of carbohydrate content. A scintigraphic study was performed on male Wistar rats weighing 250 g for 60 min after iv administration of 1 mg of each protein (7.4 MBq), as the intact proteins and also after carbohydrate oxidation. Images were obtained with a Siemens gamma camera with a high-resolution collimator and processed with a MicroDelta system. Hepatic and renal distribution were established and are reported as percent of injected dose. Liver uptake of BJg was significantly higher than liver uptake of BJs (94.3 vs 81.4%) (P<0.05). This contributed to its greater removal from the intravascular compartment, and consequently lower kidney accumulation of BJg in comparison to BJs (5.7 vs 18.6%) (P<0.05). After carbohydrate oxidation, there was a decrease in hepatic accumulation of both proteins and consequently a higher renal overload. The tissue distribution of periodate-treated BJg was similar to that of native BJs: 82.7 vs 81.4% in the liver and 17.3 vs 18.6% in the kidneys. These observations indicate the important role of sugar residues of Bence Jones proteins for their recognition by specific membrane receptors, which leads to differential tissue accumulation and possible toxicity
Resumo:
Soybean agglutinin (SBA) lectin, a protein present in raw soybean meals, can bind to and be extensively endocytosed by intestinal epithelial cells, being nutritionally toxic for most animals. In the present study we show that SBA (5-200 µg/cavity) injected into different cavities of rats induced a typical inflammatory response characterized by dose-dependent exudation and neutrophil migration 4 h after injection. This effect was blocked by pretreatment with glucocorticoid (0.5 mg/kg) or by co-injection of N-acetyl-galactosamine (100 x [M] lectin), but not of other sugars (100 x [M] lectin), suggesting an inflammatory response related to the lectin activity. Neutrophil accumulation was not dependent on a direct effect of SBA on the macrophage population since the effect was not altered when the number of peritoneal cells was increased or decreased in vivo. On the other hand, SBA showed chemotactic activity for human neutrophils in vitro. A slight increase in mononuclear cells was observed 48 h after ip injection of SBA. Phenotypic analysis of these cells showed an increase in the CD4+/CD8- lymphocyte population that returned to control levels after 15 days, suggesting the development of an immune response. SBA-stimulated macrophages presented an increase in the expression of CD11/CD18 surface molecules and showed some characteristics of activated cells. After intravenous administration, SBA increased the number of circulating neutrophils and inhibited in a dose-dependent manner the neutrophil migration induced by ip injection of carrageenan into peritoneal cavities. The co-injection of N-acetyl-galactosamine or mannose, but not glucose or fucose, inhibited these effects. The data indicate that soybean lectin is able to induce a local inflammatory reaction but has an anti-inflammatory effect when present in circulating blood
Resumo:
The aim of the present study was to evaluate the acidification of the endosome-lysosome system of renal epithelial cells after endocytosis of two human immunoglobulin lambda light chains (Bence-Jones proteins, BJP) obtained from patients with multiple myeloma. Renal epithelial cell handling of two BJP (neutral and acidic BJP) was evaluated by rhodamine fluorescence. Renal cells (MDCK) were maintained in culture and, when confluent, were incubated with rhodamine-labeled BJP for different periods of time. Photos were obtained with a fluorescence microscope (Axiolab-Zeiss). Labeling density was determined on slides with a densitometer (Shimadzu Dual-Wavelength Flying-Spot Scanner CS9000). Endocytosis of neutral and acidic BJP was correlated with acidic intracellular compartment distribution using acridine orange labeling. We compared the pattern of distribution after incubation of native neutral and acidic BJP and after complete deglycosylation of BJP by periodate oxidation. The subsequent alteration of pI converted neutral BJP to acidic BJP. There was a significant accumulation of neutral BJP in endocytic structures, reduced lysosomal acidification, and a diffuse pattern of acidification. This pattern was reversed after total deglycosylation and subsequent alteration of the pI to an acidic BJP. We conclude that the physicochemical characteristics of BJP interfere with intracellular acidification, possibly explaining the strong nephrotoxicity of neutral BJP. Lysosomal acidification is fundamental for adequate protein processing and catabolism.
Resumo:
The photogeneration of nitric oxide (NO) using laser flash photolysis was investigated for S-nitroso-glutathione (GSNO) and S-nitroso-N-acetylcysteine (NacySNO) at pH 6.4 (PBS/HCl) and 7.4 (PBS). Irradiation of S-nitrosothiol with light (lambda = 355 nm followed by absorption spectroscopy) resulted in the homolytic decomposition of NacySNO and GSNO to generate radicals (GS· and NacyS·) and NO. The release of NO from donor compounds measured with an ISO-Nometer apparatus was larger at pH 7.4 than pH 6.4. NacySNO was also incorporated into dipalmitoyl-phosphatidylcholine liposomes in the presence and absence of zinc phthalocyanine (ZnPC), a well-known photosensitizer useful for photodynamic therapy. Liposomes are usually used as carriers for hydrophobic compounds such as ZnPC. Inclusion of ZnPC resulted in a decrease in NO liberation in liposomal medium. However, there was a synergistic action of both photosensitizers and S-nitrosothiols resulting in the formation of other reactive species such as peroxynitrite, which is a potent oxidizing agent. These data show that NO release depends on pH and the medium, as well as on the laser energy applied to the system. Changes in the absorption spectrum were monitored as a function of light exposure.
Resumo:
The anti-inflammatory effects of long-term ethanol intoxication were determined during ethanol treatment and withdrawal on the basis of neutrophil and eosinophil migration, hind paw edema and mast cell degranulation. Male Wistar rats (180-200 g, around 2 months of age) were exposed to increasing concentrations of ethanol vapor over a 10-day period. One group was evaluated immediately after exposure (treated group - intoxicated), and another was studied 7 h later (withdrawal group). Ethanol inhalation treatment significantly inhibited carrageenan- (62% for the intoxicated group, N = 5, and 35% for the withdrawal group, N = 6) and dextran-induced paw edema (32% for intoxicated rats and 26% for withdrawal rats, N = 5 per group). Ethanol inhalation significantly reduced carrageenan-induced neutrophil migration (95% for intoxicated rats and 41% for withdrawn rats, N = 6 per group) into a subcutaneous 6-day-old air pouch, and Sephadex-induced eosinophil migration to the rat peritoneal cavity (100% for intoxicated rats and 64% for withdrawn rats, N = 6 per group). A significant decrease of mast cell degranulation was also demonstrated (control, 82%; intoxicated, 49%; withdrawn, 51%, N = 6, 6 and 8, respectively). Total leukocyte and neutrophil counts in venous blood increased significantly during the 10 days of ethanol inhalation (leukocytes, 13, 27 and 40%; neutrophils, 42, 238 and 252%, respectively, on days 5, 9 and 10, N = 7, 6 and 6). The cell counts decreased during withdrawal, but were still significantly elevated (leukocytes, 10%; neutrophils, 246%, N = 6). These findings indicate that both the cellular and vascular components of the inflammatory response are compromised by long-term ethanol intoxication and remain reduced during the withdrawal period.
Resumo:
We examined the effect of several K+ channel blockers such as glibenclamide, tolbutamide, charybdotoxin (ChTX), apamin, tetraethylammonium chloride (TEA), 4-aminopyridine (4-AP), and cesium on the ability of fentanyl, a clinically used selective µ-opioid receptor agonist, to promote peripheral antinociception. Antinociception was measured by the paw pressure test in male Wistar rats weighing 180-250 g (N = 5 animals per group). Carrageenan (250 µg/paw) decreased the threshold of responsiveness to noxious pressure (delta = 188.1 ± 5.3 g). This mechanical hyperalgesia was reduced by fentanyl (0.5, 1.5 and 3 µg/paw) in a peripherally mediated and dose-dependent fashion (17.3, 45.3 and 62.6%, respectively). The selective blockers of ATP-sensitive K+ channels glibenclamide (40, 80 and 160 µg/paw) and tolbutamide (80, 160 and 240 µg/paw) dose dependently antagonized the antinociception induced by fentanyl (1.5 µg/paw). In contrast, the effect of fentanyl was unaffected by the large conductance Ca2+-activated K+ channel blocker ChTX (2 µg/paw), the small conductance Ca2+-activated K+ channel blocker apamin (10 µg/paw), or the non-specific K+ channel blocker TEA (150 µg/paw), 4-AP (50 µg/paw), and cesium (250 µg/paw). These results extend previously reported data on the peripheral analgesic effect of morphine and fentanyl, suggesting for the first time that the peripheral µ-opioid receptor-mediated antinociceptive effect of fentanyl depends on activation of ATP-sensitive, but not other, K+ channels.
Resumo:
It is widely accepted that the classical constant-temperature hot-plate test is insensitive to cyclooxygenase inhibitors. In the current study, we developed a variant of the hot-plate test procedure (modified hot-plate (MHP) test) to measure inflammatory nociception in freely moving rats and mice. Following left and right hind paw stimulation with a phlogogen and vehicle, respectively, the animals were placed individually on a hot-plate surface at 51ºC and the withdrawal latency for each paw was determined simultaneously in measurements performed at 15, 60, 180, and 360 min post-challenge. Plantar stimulation of rats (250 and 500 µg/paw) and mice (125-500 µg/paw) with carrageenan led to a rapid hyperalgesic response of the ipsilateral paw that reached a plateau from 15 to 360 min after challenge. Pretreatment with indomethacin (4 mg/kg, ip) inhibited the phenomenon at all the times analyzed. Similarly, plantar stimulation of rats and mice with prostaglandin E2 (0.5 and 1 µg/paw) also resulted in rapid hyperalgesia which was first detected 15 min post-challenge. Finally, we observed that the MHP test was more sensitive than the classical Hargreaves' test, being able to detect about 4- and 10-fold lower doses of prostaglandin E2 and carrageenan, respectively. In conclusion, the MHP test is a simple and sensitive method for detecting peripheral hyperalgesia and analgesia in rats and mice. This test represents a low-cost alternative for the study of inflammatory pain in freely moving animals.
Resumo:
In order to detect several new HLA-A class I alleles that have been described since 1998, the original PCR-RFLP method developed to identify the 78 alleles recognized at that time at high resolution level was adapted by us for low and medium resolution levels using a nested PCR-RFLP approach. The results obtained from blood samples of 23 subjects using both the PCR-RFLP method and a commercial kit (MicroSSP1A®, One Lambda Inc.) showed an agreement higher than 95%. The PCR-RFLP adapted method was effective in low and medium resolution histocompatibility evaluations.
Resumo:
Carpotroche brasiliensis is a native Brazilian tree belonging to the Oncobeae tribe of Flacourtiaceae. The oil extracted from its seeds contains as major constituents the same cyclopentenyl fatty acids hydnocarpic (40.5%), chaulmoogric (14.0%) and gorlic (16.1%) acids found in the better known chaulmoogra oil prepared from the seeds of various species of Hydnocarpus (Flacourtiaceae). These acids are known to be related to the pharmacological activities of these plants and to their use as anti-leprotic agents. Although C. brasiliensis oil has been used in the treatment of leprosy, a disease that elicits inflammatory responses, the anti-inflammatory and analgesic activities of the oil and its constituents have never been characterized. We describe the anti-inflammatory and antinociceptive activities of C. brasiliensis seed oil in acute and chronic models of inflammation and in peripheral and central nociception. The mixture of acids from C. brasiliensis administered orally by gavage showed dose-dependent (10-500 mg/kg) anti-inflammatory activity in carrageenan-induced rat paw edema, inhibiting both the edema by 30-40% and the associated hyperalgesia. The acid fraction (200 mg/kg) also showed significant antinociceptive activity in acetic acid-induced constrictions (57% inhibition) and formalin-induced pain (55% inhibition of the second phase) in Swiss mice. No effects were observed in the hot-plate (100 mg/kg; N = 10), rota-road (200 mg/kg; N = 9) or adjuvant-induced arthritis (50 mg/kg daily for 7 days; N = 5) tests, the latter a chronic model of inflammation. The acid fraction of the seeds of C. brasiliensis which contains cyclopentenyl fatty acids is now shown to have significant oral anti-inflammatory and peripheral antinociceptive effects.
Resumo:
Ischemic preconditioning (IPC), a strategy used to attenuate ischemia-reperfusion injury, consists of brief ischemic periods, each followed by reperfusion, prior to a sustained ischemic insult. The purpose of the present study was to evaluate the local and systemic anti-inflammatory effects of hind limb IPC in male Wistar rat (200-250 g) models of acute inflammation. IPC was induced with right hind limb ischemia for 10 min by placing an elastic rubber band tourniquet on the proximal part of the limb followed by 30 min of reperfusion. Groups (N = 6-8) were submitted to right or left paw edema (PE) with carrageenan (100 µg) or Dextran (200 µg), hemorrhagic cystitis with ifosfamide (200 mg/kg, ip) or gastric injury (GI) with indomethacin (20 mg/kg, vo). Controls received similar treatments, without IPC (Sham-IPC). PE is reported as variation of paw volume (mL), vesical edema (VE) as vesical wet weight (mg), vascular permeability (VP) with Evans blue extravasation (µg), GI with the gastric lesion index (GLI; total length of all erosions, mm), and neutrophil migration (NM) from myeloperoxidase activity. The statistical significance (P < 0.05) was determined by ANOVA, followed by the Tukey test. Carrageenan or Dextran-induced PE and VP in either paw were reduced by IPC (42-58.7%). IPC inhibited VE (38.8%) and VP (54%) in ifosfamide-induced hemorrhagic cystitis. GI and NM induced by indomethacin were inhibited by IPC (GLI: 90.3%; NM: 64%). This study shows for the first time that IPC produces local and systemic anti-inflammatory effects in models of acute inflammation other than ischemia-reperfusion injury.
Resumo:
Statins are among the most prescribed drugs in recent clinical practice. They are also known for their pleiotropic actions, which are independent of their lipid-lowering properties. The effect of lovastatin was investigated against carrageenan-induced paw edema in male Wistar rats (200-250 g) and on leukocyte migration, as measured by carrageenan-induced peritonitis in male Swiss mice (20-25 g), which are models of acute inflammation. Lovastatin (administered 1 h prior to carrageenan), at oral doses of 2, 5, and 10 mg/kg, markedly attenuated paw edema formation in rats at the 4th hour after carrageenan injection (25, 43, and 37% inhibition, respectively). Inhibitions of 20, 45 and 80% were observed in the leukocyte migration, as evaluated by carrageenan-induced peritonitis in mice with lovastatin doses of 0.5, 1 and 5 mg/kg, as compared to controls. Furthermore, lovastatin (administered 1 h before initiation) reduced the nociceptive effect of the formalin test in mice, at both phases, at doses of 2, 5, and 10 mg/kg: first phase (51, 65, and 70%, respectively) and second phase (73, 57, and 66% inhibition of licking time, respectively). The anti-nociceptive activity of lovastatin was inhibited by naloxone (3 mg/kg, sc). Lovastatin (0.01, 0.1, and 1 µg/mL) inhibited by 23, 79, and 86%, respectively, the release of myeloperoxidase from human neutrophils. Leukocyte (predominantly neutrophils) infiltration was almost completely reduced by lovastatin treatment, as observed in the model of acute paw edema with hematoxylin and eosin staining. In addition, lovastatin decreased the number of cells expressing tumor necrosis factor-α (TNF-α) and the inducible form of nitric oxide synthase (iNOS) activity. Therefore, the alterations in leukocyte activity and cytokine release could contribute to the anti-inflammatory activity of lovastatin.
Resumo:
Implantation of Walker 256 tumor decreases acute systemic inflammation in rats. Inflammatory hyperalgesia is one of the most important events of acute inflammation. The L-arginine/NO/cGMP/K+ATP pathway has been proposed as the mechanism of peripheral antinociception mediated by several drugs and physical exercise. The objective of this study was to investigate a possible involvement of the NO/cGMP/K+ATP pathway in antinociception induced in Walker 256 tumor-bearing male Wistar rats (180-220 g). The groups consisted of 5-6 animals. Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. Walker tumor (4th and 7th day post-implantation) reduced prostaglandin E2- (PGE2, 400 ng/paw; 50 µL; intraplantar injection) and carrageenan-induced hypernociception (500 µg/paw; 100 µL; intraplantar injection). Walker tumor-induced analgesia was reversed (99.3% for carrageenan and 77.2% for PGE2) by a selective inhibitor of nitric oxide synthase (L-NAME; 90 mg/kg, ip) and L-arginine (200 mg/kg, ip), which prevented (80% for carrageenan and 65% for PGE2) the effect of L-NAME. Treatment with the soluble guanylyl cyclase inhibitor ODQ (100% for carrageenan and 95% for PGE2; 8 µg/paw) and the ATP-sensitive K+ channel (KATP) blocker glibenclamide (87.5% for carrageenan and 100% for PGE2; 160 µg/paw) reversed the antinociceptive effect of tumor bearing in a statistically significant manner (P < 0.05). The present study confirmed an intrinsic peripheral antinociceptive effect of Walker tumor bearing in rats. This antinociceptive effect seemed to be mediated by activation of the NO/cGMP pathway followed by the opening of KATP channels.
Resumo:
This paper reports on the in vitro antibacterial and in vivo anti-inflammatory properties of a hydroethanolic extract of the aerial parts of Gochnatia pulchra (HEGP). It also describes the antibacterial activity of HEGP fractions and of the isolated compounds genkwanin, scutellarin, apigenin, and 3,5-O-dicaffeoylquinic acid, as evaluated by a broth microdilution method. While HEGP and its fractions did not provide promising results, the isolated compounds exhibited pronounced antibacterial activity. The most sensitive microorganism was Streptococcus pyogenes, with minimum inhibitory concentration (MIC) values of 100, 50 and 25 µg/mL for genkwanin and the flavonoids apigenin and scutellarin, respectively. Genkwanin produced an MIC value of 25 µg/mL against Enterococcus faecalis. A paw edema model in rats and a pleurisy inflammation model in mice aided investigation of the anti-inflammatory effects of HEGP. This study also evaluated the ability of HEGP to modulate carrageenan-induced interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), and monocyte chemoattractant protein-1 (MCP-1) production. Orally administered HEGP (250 and 500 mg/kg) inhibited carrageenan-induced paw edema. Regarding carrageenan-induced pleurisy, HEGP at 50, 100, and 250 mg/kg diminished leukocyte migration by 71.43%, 69.24%, and 73.34% (P<0.05), respectively. HEGP suppressed IL-1β and MCP-1 production by 55% and 50% at 50 mg/kg (P<0.05) and 60% and 25% at 100 mg/kg (P<0.05), respectively. HEGP abated TNF-α production by macrophages by 6.6%, 33.3%, and 53.3% at 100, 250, and 500 mg/kg (P<0.05), respectively. HEGP probably exerts anti-inflammatory effects by inhibiting production of the pro-inflammatory cytokines TNF-α, IL-1β, and MCP-1.
Resumo:
As propriedades termofísicas de alimentos, necessárias nas simulações e cálculos do processo de congelamento, incluem principalmente a densidade, condutividade térmica e calor específico. Neste trabalho, as difusividades e condutividades térmicas da solução, usadas como modelo para o congelamento de polpas de frutas, foram medidas pelo método da sonda com aquecimento. Os experimentos foram conduzidos na faixa de -25 a 0ºC com modelos alimentícios constituídos de 0,5% de K- carrageenan + 10% de sacarose (massa/volume de água). Modelos estruturais foram usados para as avaliações da condução de calor, combinada com a fração de gelo predita para as amostras a partir dos modelos de Heldman e foram comparados com os valores das condutividades térmicas efetivas medidas. Os modelos estruturais empregados foram: em série, paralelo e Maxwell-Eucken, com o gelo considerado como a fase dispersa. Em todos os ensaios, o modelo de Maxwell-Eucken apresentou os melhores resultados (erro máximo de 6,13% quando comparado com os valores experimentais medidos) e foi escolhido para a predição da condutividade térmica efetiva de soluções-modelo de polpas de frutas congeladas. Os valores calculados da condutividade térmica foram ajustados em termos de funções polinomiais, divididas em quatro faixas de temperatura e podem ser usadas na resolução dos problemas de transferência de calor, nos processos de congelamento.
Resumo:
Um novo método espectrofotométrico simples, sensível e com boa seletividade é apresentado para a determinação rápida de mercúrio (II) em nível de traços com 2-mercapto-5-metilbenzilimidazol (MMBI) como um novo reagente espectrofotométrico (lambda max = 320 nm), em um meio aquoso ligeiramente alcalino (tampão Britton-Robinson (BR) 0,04 M, pH 8,0). A reação é instantânea e a absorbância permanece estável por mais de 24 horas. O coeficiente de absorção molar encontrado foi de 2,71 x 10(4) L mol-1 cm-1. A composição estequiométrica do complexo é de 1:1 (Hg:MMBI). Considerável excesso dos íons cobre, zinco, chumbo e cádmio não interfere na determinação. O método desenvolvido permitiu a determinação de mercúrio na faixa de 2 x 10-6 a 4 x 10-5 mol.L-1 com boa precisão e exatidão, e o limite de detecção para Hg foi de 9,9 x 10-7 mol.L-1. O método foi aplicado com sucesso a amostras de peixe e os resultados foram avaliados com o clássico método de espectrometria de absorção atômica (EAA). Os desvios padrão relativos para as amostras analisadas foram de 7,2 e 33% (n = 5), enquanto os erros foram de 1,63 e 11,6. O método mostrou-se sensível, seletivo e foi aplicado para a determinação de mercúrio em amostras de peixe com resultados satisfatórios.