198 resultados para insect vectors
Resumo:
Rhodnius prolixus, a blood-sucking triatomine with domiciliary anthropophilic habits, is the main vector of Chagas disease. The current paradigm of Trypanosoma cruzi transmission in Columbia includes a sylvatic and domiciliary cycle co-existing with domestic and sylvatic populations of reservoirs. The aim of this study is to evaluate the population densities and relative abundance of triatomines and mammals that may be involved in the sylvatic cycle of Chagas disease to clarify the epidemiological scenario in an endemic area in the province of Casanare. Insect vectors on Attalea butyracea palms were captured using both manual searches and bait traps. The capture of mammals was performed using Sherman and Tomahawk traps. We report an infestation index of 88.5% in 148 palms and an index of T. cruzi natural infection of 60.2% in 269 dissected insects and 11.9% in 160 captured mammals. High population densities of triatomines were observed in the sylvatic environment and there was a high relative abundance of reservoirs in the area, suggesting a stable enzootic cycle. We found no evidence of insect domiciliation. Taken together, these observations suggest that eco-epidemiological factors shape the transmission dynamics of T. cruzi, creating diverse scenarios of disease transmission.
Resumo:
Trypanosoma cruziis the aetiological agent of Chagas disease, which affects approximately eight million people in the Americas. This parasite exhibits genetic variability, with at least six discrete typing units broadly distributed in the American continent. T. cruziI (TcI) shows remarkable genetic diversity; a genotype linked to human infections and a domestic cycle of transmission have recently been identified, hence, this strain was named TcIDom. The aim of this work was to describe the spatiotemporal distribution of TcI subpopulations across humans, insect vectors and mammalian reservoirs in Colombia by means of molecular typing targeting the spliced leader intergenic region of mini-exon gene. We analysed 101 TcI isolates and observed a distribution of sylvatic TcI in 70% and TcIDom in 30%. In humans, the ratio was sylvatic TcI in 60% and TcIDom in 40%. In mammal reservoirs, the distribution corresponded to sylvatic TcI in 96% and TcIDom in 4%. Among insect vectors, sylvatic TcI was observed in 48% and TcIDom in 52%. In conclusion, the circulation of TcIDom is emerging in Colombia and this genotype is still adapting to the domestic cycle of transmission. The epidemiological and clinical implications of these findings are discussed herein.
Resumo:
The blood feeding of a population of Cx. nigripalpus from Parque Ecológico do Tietê (PET) was investigated using an indirect ELISA protocol. Mosquitoes were captured outside houses. Five hundred sixteen engorged females collected in a reforested area and 25 in an open area were tested. Rodents and dogs were the most common blood sources, accounting for approximately 65.3% of blood meals. Human blood was detected in 10.9%, dog blood in 26.1%, chicken blood in 2.4%, and rodent blood in 39.2% of the 541 insects tested. ELISA failed in identifying the blood sources of 233 engorged females, indicating that the mosquitoes may have fed on a host which was not tested. One hundred six individuals were positive for more than one host. The unweighted human blood index was 0.14 and the rodent/human, human/chicken, and dog/rodent feeding index values were 2.70, 1.51, and 1.33, respectively. Furthermore, rodents are defensive hosts for this haematophagous insect which looks for another host to complete blood-feeding. Considering that rodents are potential reservoirs for Mucambo virus and Saint Louis encephalitis virus and that Cx. nigripalpus feed on the blood of those mammals, we hypothesize that mosquito population in PET could participate in the transmission cycle of those arboviruses. Additionally, this species might be involved in the transmission of Dirofilaria immitis to dogs at this area.
Resumo:
The spatial dynamics of Citrus Variegated Chlorosis (CVC) was studied in a five-year old commercial orchard of 'Valencia' sweet orange (Citrus sp.) trees, located in the northern region of the state of São Paulo, Brazil. One thousand trees were assessed in 25 rows of 40 trees, planted at 8 x 5 m spacing. Disease incidence data were taken beginning in March 1994 and ending in January 1996, at intervals of four to five months. Disease aggregation was observed through the dispersion index analysis (Ib), which was calculated by dividing the area into quadrants. CVC spatial dynamics was examined using semivariogram analysis, which revealed that the disease was aggregated in the field forming foci of 10 to 14 m. For each well-fitted model, a kriging map was created to better visualize the distribution of the disease. The spherical model was the best fit for the data in this study. Kriging maps also revealed that the incidence of CVC increased in periods during which the trees underwent vegetative growth, coinciding with greater expected occurrence of insect vectors of the bacterium in the field.
Resumo:
Abstract: Equine infectious anemia (EIA) is a transmissible and incurable disease caused by a lentivirus, the equine infectious anemia virus (EIAV). There are no reports in the literature of this infection in Equidae on Marajo Island. The objective of this study was to diagnose the disease in the municipalities of Cachoeira do Arari, Salvaterra, Santa Cruz do Arari and Soure, on Marajó Island, state of Pará, Brazil. For serological survey samples were collected from 294 horses, over 5-month-old, males and females of puruca and marajoara breeds and from some half-breeds, which were tested by immunodiffusion in Agar gel (AGID). A prevalence of 46.26% (136/294) positive cases was found. EIA is considered endemic in the municipalities studied, due to the ecology of the region with a high numbered population of bloodsucking insect vectors and the absence of official measures for the control of the disease.
Resumo:
To determine in influence of feeding, lighting and time of day on the copulating behavior of Panstrongylus megistus, 480 insect pairs were divided into four groups of 120 each and tested in the following respective situations: without food deprivation (F.D.), with five days of F.D., with ten days of F.D., and with 20 days of F. D. The tests were performed between 9:00 a.m. to 12:00a.m. and 7:00 p.m. to 10:00 p.m., with light (700-1400 lux) and in the dark (1.4-2.8 lux) and behavior was recorded by the time sampling technique. Mating spped (MS) and duration of copulation (DC) were also calculated for each situation. The maximum frequency of copulation was observed after five days of F.D., at night, in the dark (n = 16), and the minimum was observed for recently-fed pairs, at night, with light (n = 4). Males approached females more often than females approached males. MS was lowest in pairs with twenty days of F.D., at night, with light (X = 23.0 ± 16.0 minutes), and highest in recently-fed pairs, during the day, with light (X = 2.9 ± 2.5 minutes). DC was shortest in recently-fed insects, during the day, in the dark (X = 23.5 ± 6.7 minutes), and longest in recently-fed animals, at night, in the dark (X = 38.3 ± 6.9 minutes).
Resumo:
We reviewed the control of transmission of leishmaniasis regarding chemotherapy, reservoirs elimination, vaccination and insect control through the use of chemical insecticides. We also discussed complementary measures like monitoring traps, impregnated bednets and curtains, repelents, pheromones, biological control, etc. A cost comparison of insecticide interventions through the use of products belonging to the four main chemical groups was also alone, comparing together conventional formulations versus a slow-release insecticide developed by the Núcleo de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro. We finally did recommendations on the situation that would justify an insecticide intervention to control sandflies.
Resumo:
This review stresses the importance of studies that will provide a basic understanding of the pathology of parasite-infected vector insects. This knowledge should be a vital component of the very focussed initiatives currently being funded in the areas of vector control. Vector fecundity reduction is discussed as an example of such pathology. Underlying mechanisms are being investigated in a model system, Hymenolepis diminuta-infected Tenebrio molitor and in Onchocerca-infected blackflies and Plasmodium-infected Anopheles stephensi. In all cases, host vitellogenesis is disrupted by the parasite and, in the tapeworm/beetle model, interaction between the parasite and the endocrine control of the insect's reproductive physiology has been demonstrated.
Resumo:
The simple eyes (ocelli) of recently emerged adult Triatoma infestans exhibit a narrow elongated "pupil", surrounded by a ring of brown-reddish pigment, the "iris". This pupil does not respond to changes in the illumination, but varies in size after the imaginal ecdysis. This change corresponds, internally, with the growth of the corneal lens and the associated retina up to an age of about 20 days. This has not been previously observed in an insect. The use of this characteristic for recognising young adults of this species is suggested.
Resumo:
Insect-borne diseases are responsible for severe mortality and morbidity worldwide. As control of insect vector populations relies primarily on the use of insecticides, the emergence of insecticide resistance as well to unintended consequences of insecticide use pose significant challenges to their continued application. Novel approaches to reduce pathogen transmission by disease vectors are been attempted, including transmission-blocking vaccines (TBVs) thought to be a feasible strategy to reduce pathogen burden in endemic areas. TBVs aim at preventing the transmission of pathogens from infected to uninfected vertebrate host by targeting molecule(s) expressed on the surface of pathogens during their developmental phase within the insect vector or by targeting molecules expressed by the vectors. For pathogen-based molecules, the majority of the TBV candidates selected as well as most of the data available regarding the effectiveness of this approach come from studies using malaria parasites. However, TBV candidates also have been identified from midgut tissues of mosquitoes and sand flies. In spite of the successes achieved in the potential application of TBVs against insect-borne diseases, many significant barriers remain. In this review, many of the TBV strategies against insect-borne pathogens and their respective ramification with regards to the immune response of the vertebrate host are discussed.
Resumo:
In the present study we evaluated different systems for the expression of mycobacterial antigen P36 secreted by Mycobacterium bovis. P36 was detected by Western blot using a specific antiserum. The P36 gene was initially expressed in E. coli, under the control of the T7 promoter, but severe proteolysis prevented its purification. We then tried to express P36 in M. smegmatis and insect cells. For M. smegmatis, we used three different plasmid vectors differing in copy number and in the presence of a promoter for expression of heterologous proteins. P36 was detected in the cell extract and culture supernatant in both expression systems and was recognized by sera from M. bovis-infected cattle. To compare the expression level and compartmentalization, the MPB70 antigen was also expressed. The highest production was reached in insect cell supernatants. In conclusion, M. smegmatis and especially the baculovirus expression system are good choices for the production of proteins from pathogenic mycobacteria for the development of mycobacterial vaccines and diagnostic reagents.
Resumo:
OBJECTIVE To evaluate the larvicidal activity of Azadirachta indica, Melaleuca alternifolia, carapa guianensis essential oils and fermented extract of Carica papaya against Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). METHODS The larvicide test was performed in triplicate with 300 larvae for each experimental group using the third larval stage, which were exposed for 24h. The groups were: positive control with industrial larvicide (BTI) in concentrations of 0.37 ppm (PC1) and 0.06 ppm (PC2); treated with compounds of essential oils and fermented extract, 50.0% concentration (G1); treated with compounds of essential oils and fermented extract, 25.0% concentration (G2); treated with compounds of essential oils and fermented extract, 12.5% concentration (G3); and negative control group using water (NC1) and using dimethyl (NC2). The larvae were monitored every 60 min using direct visualization. RESULTS No mortality occurred in experimental groups NC1 and NC2 in the 24h exposure period, whereas there was 100% mortality in the PC1 and PC2 groups compared to NC1 and NC2. Mortality rates of 65.0%, 50.0% and 78.0% were observed in the groups G1, G2 and G3 respectively, compared with NC1 and NC2. CONCLUSIONS The association between three essential oils from Azadirachta indica, Melaleuca alternifolia, Carapa guianensis and fermented extract of Carica papaya was efficient at all concentrations. Therefore, it can be used in Aedes aegypti Liverpool third larvae stage control programs.
Resumo:
Mice immunized with heat or merthiolate-killed culture trypomastigotes of the non-virulent G strain were resistant to the challenge by insect-derived trypomastigotes of the CL strain of Trypanosoma cruzi. No parasitemia was detected, by direct microscopic examination of blood samples, in 90% of immunized mice while all control animals developed a high parasitemia. Trypsinization before heat-inactivation, or fixation with paraformaldehyde, apparently reduced the immunogenicity of the G strain trypomastigotes. Mice immunized with trypomastigotes treated by either of these procedures were not protected against infection by virulent T. cruzi. Analysis of the 13I-labeled surface proteins of G strain trypomastigotes inactivated by the various methods suggests that these components are involved in eliciting protective immunity against T. cruzi infection.
Resumo:
A laboratory study was conducted to test the toxicity of synthetic insecticides added to defibrinated sheep blood kept at room temperature and offered as food to the following triatomine species: Triatoma infestans, Panstrongylus megistus, Triatoma vitticeps, Triatoma pseudomaculata, Triatoma brasiliensis and Rhodnius prolixus. The insecticides used, at a concentration of 1g/l, were: HCH, DDT, Malathion and Trichlorfon, and the lethalithy observed at the end of a 7-day period varied according to the active principle of each. HCH was the most effective by the oral route, killing 100% of the insects, except P. megistus (95.7%) and T. pseudomaculata (94.1%). Trichlorfon killed the insects at rates ranging from 71.8% (T. vitticeps) to 98% (R. prolixus). Malathion was slightly less efficient, killing the insects at rates from 56.8% (T. vitticeps) to 97% (T.brasiliensis). DDT was the least effective, with a killing rate of 10% (T. vitticeps) to 75% (T.brasiliensis). Since the tests were performed at room temperature, we suggest that baits of this type should be tried for the control of triatomines in the field.
Resumo:
The members of the subfamily Triatominae (Hemiptera : Reduviidae) comprise a great number of species of medical importance in the transmission of the T. cruzi (American trypanosomiasis). The aim of this study was to contribute to the knowledge about the chemical composition in proteins, lipids, lipoproteins, and carbohydrates of vectors of Chagas' disease corresponding to twelve members of the subfamily Triatominae. This study was carried out in ninphs of the fifth instar and adult males of the species: T. delpontei, T. dimidiata, T. guasayana, T. infestans, T. mazzotti, T. pallidipennis, T. patagonica, T. platensis, T. rubrovaria, T. sordida of the Triatoma genus, and D. maximus and P. megistus of the Dipatalogaster and Panstrongylus genera respectively. The results show on one hand, qualitative differences in the protein composition, and on the other hand, similarity in the lipoprotein profiles. Lipids, proteins, and carbohydrates did not show significant differences between species or/and stages.