70 resultados para inmune activation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the molecular mechanism and signal transduction of pim-1, an oncogene encoding a serine-threonine kinase. This is a true oncogene which prolongs survival and inhibits apoptosis of hematopoietic cells. In order to determine whether the effects of Pim-1 occur by regulation of the mitogen-activated protein kinase pathway, we used a transcriptional reporter assay by transient co-transfection as a screening method. In this study, we found that Pim-1 inhibited the Elk-1 and NFkappaB transcriptional activities induced by activation of the mitogen-activated protein kinase cascade in reporter gene assays. However, Western blots showed that the induction of Elk-1-regulated expression of endogenous c-Fos was not affected by Pim-1. The phosphorylation and activation of neither Erk1/2 nor Elk-1 was influenced by Pim-1. Also, in the gel shift assay, the pattern of endogenous NFkappaB binding to its probe was not changed in any manner by Pim-1. These data indicate that Pim-1 does not regulate the activation of Erk1/2, Elk-1 or NFkappaB. These contrasting results suggest a pitfall of the transient co-transfection reporter assay in analyzing the regulation of transcription factors outside of the chromosome context. It ensures that results from reporter gene expression assay should be verified by study of endogenous gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholecystokinin (CCK) influences gastrointestinal motility, by acting on central and peripheral receptors. The aim of the present study was to determine whether CCK has any effect on isolated duodenum longitudinal muscle activity and to characterize the mechanisms involved. Isolated segments of the rat proximal duodenum were mounted for the recording of isometric contractions of longitudinal muscle in the presence of atropine and guanethidine. CCK-8S (EC50: 39; 95% CI: 4.1-152 nM) and cerulein (EC50: 58; 95% CI: 18-281 nM) induced a concentration-dependent and tetrodotoxin-sensitive relaxation. Nomeganitro-L-arginine (L-NOARG) reduced CCK-8S- and cerulein-induced relaxation (IC50: 5.2; 95% CI: 2.5-18 µM) in a concentration-dependent manner. The magnitude of 300 nM CCK-8S-induced relaxation was reduced by 100 µM L-NOARG from 73 ± 5.1 to 19 ± 3.5% in an L-arginine but not D-arginine preventable manner. The CCK-1 receptor antagonists proglumide, lorglumide and devazepide, but not the CCK-2 receptor antagonist L-365,260, antagonized CCK-8S-induced relaxation in a concentration-dependent manner. These findings suggest that CCK-8S and cerulein activate intrinsic nitrergic nerves acting on CCK-1 receptors in order to cause relaxation of the rat duodenum longitudinal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluated the hemodynamic pattern and the contribution of the sympathetic nervous system in conscious and anesthetized (1.4 g/kg urethane, iv) Wistar rats with L-NAME-induced hypertension (20 mg/kg daily). The basal hemodynamic profile was similar for hypertensive animals, conscious (N = 12) or anesthetized (N = 12) treated with L-NAME for 2 or 7 days: increase of total peripheral resistance associated with a decrease of cardiac output (CO) compared to normotensive animals, conscious (N = 14) or anesthetized (N = 14). Sympathetic blockade with hexamethonium essentially caused a decrease in total peripheral resistance in hypertensive animals (conscious, 2 days: from (means ± SEM) 2.47 ± 0.08 to 2.14 ± 0.07; conscious, 7 days: from 2.85 ± 0.13 to 2.07 ± 0.33; anesthetized, 2 days: from 3.00 ± 0.09 to 1.83 ± 0.25 and anesthetized, 7 days: from 3.56 ± 0.11 to 1.53 ± 0.10 mmHg mL-1 min-1) with no change in CO in either group. However, in the normotensive group a fall in CO (conscious: from 125 ± 4.5 to 96 ± 4; anesthetized: from 118 ± 1.5 to 104 ± 5.5 mL/min) was observed. The responses after hexamethonium were more prominent in the hypertensive anesthetized group. However, no difference was observed between conscious and anesthetized normotensive rats in response to sympathetic blockade. The present study shows that the vasoconstriction in response to L-NAME was mediated by the sympathetic drive. The sympathetic tone plays an important role in the initiation and maintenance of hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A successful gene therapy clinical trial that also encountered serious adverse effects has sparked extensive study and debate about the future directions for retrovirus-mediated interventions. Treatment of X-linked severe combined immunodeficiency with an oncoretrovirus harboring a normal copy of the gc gene was applied in two clinical trials, essentially curing 13 of 16 infants, restoring a normal immune system without the need for additional immune-related therapies. Approximately 3 years after their gene therapy, tragically, 3 of these children, all from the same trial, developed leukemia as a result of this experimental treatment. The current understanding of the mechanism behind this leukemogenesis involves three critical and cooperating factors, i.e., viral integration, oncogene activation, and the function of the therapeutic gene. In this review, we will explore the causes of this unwanted event and some of the possibilities for reducing the risk of its reoccurrence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immune consequences of in utero HIV exposure to uninfected children whose mothers were submitted to highly active antiretroviral therapy (HAART) during gestation are not well defined. We evaluated 45 HIV-exposed uninfected (ENI) neonates and 45 healthy unexposed control (CT) neonates. All HIV-infected mothers received HAART during pregnancy, and the viral load at delivery was <50 copies/mL for 56.8%. Twenty-three ENI neonates were further evaluated after 12 months and compared to 23 unexposed healthy age-matched infants. Immunophenotyping was performed by flow cytometry in cord and peripheral blood. Cord blood lymphocyte numbers did not differ between groups. However, ENI neonates had a lower percentage of naive T cells than CT neonates (CD4+, 76.6 vs 83.1%, P < 0.001; CD8+, 70.9 vs 79.6%, P = 0.003) and higher percentages of central memory T cells than CT neonates (CD4+, 13.9 vs 8.7%, P < 0.001; CD8+, 8.6 vs 4.8%, P = 0.001). CD38 mean fluorescence intensity of T cells was higher in ENI neonates (CD4+, 62.2 vs 52.1, P = 0.007; CD8+, 47.7 vs 35.3, P < 0.001). At 12 months, ENI infants still had higher mean fluorescence intensity of CD38 on T cells (CD4+, 34.2 vs 23.3, P < 0.001; CD8+, 26.8 vs 19.4, P = 0.035). Despite effective maternal virologic control at delivery, HIV-exposed uninfected children were born with lower levels of naive T cells. Immune activation was present at birth and remained until at least 12 months of age, suggesting that in utero exposure to HIV causes subtle immune abnormalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical stimulation of baroreceptor afferents was used in the 1960's in several species, including human beings, for the treatment of refractory hypertension. This approach bypasses the site of baroreceptor mechanosensory transduction. Chronic electrical stimulation of arterial baroreceptors, particularly of the carotid sinus nerve (Hering's nerve), was proposed as an ultimate effort to treat refractory hypertension and angina pectoris due to the limited nature of pharmacological therapy available at that time. Nevertheless, this approach was abandoned in the early 1970's due to technical limitations of implantable devices and to the development of better-tolerated antihypertensive medications. More recently, our laboratory developed the technique of electrical stimulation of the aortic depressor nerve in conscious rats, enabling access to hemodynamic responses without the undesirable effect of anesthesia. In addition, electrical stimulation of the aortic depressor nerve allows assessment of the hemodynamic responses and the sympathovagal balance of the heart in hypertensive rats, which exhibit a well-known decrease in baroreflex sensitivity, usually attributed to baroreceptor ending dysfunction. Recently, there has been renewed interest in using electrical stimulation of the carotid sinus, but not the carotid sinus nerve, to lower blood pressure in conscious hypertensive dogs as well as in hypertensive patients. Notably, previous undesirable technical outcomes associated with electrical stimulation of the carotid sinus nerve observed in the 1960's and 1970's have been overcome. Furthermore, promising data have been recently reported from clinical trials that evaluated the efficacy of carotid sinus stimulation in hypertensive patients with drug resistant hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSCs) have been reported to secrete a variety of cytokines and growth factors acting as trophic suppliers, but little is known regarding the effects of conditioned medium (CM) of MSCs isolated from femurs and tibias of mouse on the artificial activation of mouse oocytes and on the developmental competence of the parthenotes. In the current study, we investigated the effect of CM on the events of mouse oocyte activation, namely oscillations of cytosolic calcium concentration ([Ca²+]i), meiosis resumption, pronucleus formation, and parthenogenetic development. The surface markers of MSCs were identified with a fluorescence-activated cell sorter. The dynamic changes of the spindle and formation of pronuclei were examined by laser-scanning confocal microscopy. Exposure of cumulus-oocyte complexes to CM for 40 min was optimal for inducing oocyte parthenogenetic activation and evoking [Ca²+]i oscillations similar to those evoked by sperm (95 vs 100%; P > 0.05). Parthenogenetically activated oocytes immediately treated with 7.5 µg/mL cytochalasin B (CB), which inhibited spindle rotation and second polar body extrusion, were mostly diploid (93 vs 6%, P < 0.01) while CB-untreated oocytes were mostly haploid (5 vs 83%, P < 0.01). Consequently, the blastocyst rate was higher in the CB-treated than in the CB-untreated oocytes. There was no significant difference in developmental rate between oocytes activated with CM and 7% ethanol (62 vs 62%, P > 0.05), but the developmental competence of the fertilized oocytes was superior to that of the parthenotes (88 vs 62%, P < 0.05). The present results demonstrate that CM can effectively activate mouse oocytes, as judged by the generation of [Ca²+]i oscillations, completion of meiosis and parthenogenetic development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R) and smooth (S) forms signal through Toll-like receptor 4 (TLR4), but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS) and nitric oxide (NO) generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Angiotensin II (ANG II), the main effector of the renin-angiotensin system, is implicated in endothelial permeability, recruitment and activation of the immune cells, and also vascular remodeling through induction of inflammatory genes. Matrix metalloproteinases (MMPs) are considered to be important inflammatory factors. Elucidation of ANG II signaling pathways and of possible cross-talks between their components is essential for the development of efficient inhibitory medications. The current study investigates the inflammatory signaling pathways activated by ANG II in cultures of human monocytic U-937 cells, and the effects of specific pharmacological inhibitors of signaling intermediates on MMP-9 gene (MMP-9) expression and activity. MMP-9 expression was determined by real-time PCR and supernatants were analyzed for MMP-9 activity by ELISA and zymography methods. A multi-target ELISA kit was employed to evaluate IκB, NF-κB, JNK, p38, and STAT3 activation following treatments. Stimulation with ANG II (100 nM) significantly increased MMP-9 expression and activity, and also activated NF-κB, JNK, and p38 by 3.8-, 2.8- and 2.2-fold, respectively (P < 0.01). ANG II-induced MMP-9 expression was significantly reduced by 75 and 67%, respectively, by co-incubation of the cells with a selective inhibitor of protein kinase C (GF109203X, 5 µM) or of rho kinase (Y-27632, 15 µM), but not with inhibitors of phosphoinositide 3-kinase (wortmannin, 200 nM), tyrosine kinases (genistein, 100 µM) or of reactive oxygen species (α-tocopherol, 100 µM). Thus, protein kinase C and Rho kinase are important components of the inflammatory signaling pathways activated by ANG II to increase MMP-9 expression in monocytic cells. Both signaling molecules may constitute potential targets for effective management of inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of 5-hydroxytryptamine (5-HT) 5-HT1A, 5-HT2C, 5-HT3, and 5-HT7 receptors modulates the excitability of cardiac vagal motoneurones, but the precise role of 5-HT2A/2B receptors in these phenomena is unclear. We report here the effects of intracisternal (ic) administration of selective 5-HT2A/2B antagonists on the vagal bradycardia elicited by activation of the von Bezold-Jarisch reflex with phenylbiguanide. The experiments were performed on urethane-anesthetized male Wistar rats (250-270 g, N = 7-9 per group). The animals were placed in a stereotaxic frame and their atlanto-occipital membrane was exposed to allow ic injections. The rats received atenolol (1 mg/kg, iv) to block the sympathetic component of the reflex bradycardia; 20-min later, the cardiopulmonary reflex was induced with phenylbiguanide (15 µg/kg, iv) injected at 15-min intervals until 3 similar bradycardias were obtained. Ten minutes after the last pre-drug bradycardia, R-96544 (a 5-HT2A antagonist; 0.1 µmol/kg), SB-204741 (a 5-HT2B antagonist; 0.1 µmol/kg) or vehicle was injected ic. The subsequent iv injections of phenylbiguanide were administered 5, 20, 35, and 50 min after the ic injection. The selective 5-HT2A receptor antagonism attenuated the vagal bradycardia and hypotension, with maximal effect at 35 min after the antagonist (pre-drug = -200 ± 11 bpm and -42 ± 3 mmHg; at 35 min = -84 ± 10 bpm and -33 ± 2 mmHg; P < 0.05). Neither the 5-HT2B receptor antagonists nor the vehicle changed the reflex. These data suggest that central 5-HT2A receptors modulate the central pathways of the parasympathetic component of the von Bezold-Jarisch reflex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to determine lipid peroxidation and nuclear factor-κB (NF-κB) activation in skeletal muscle and the plasma cytokine profile following maximum progressive swimming. Adult male Swiss mice (N = 15) adapted to the aquatic environment were randomly divided into three groups: immediately after exercise (EX1), 3 h after exercise (EX2) and control. Animals from the exercising groups swam until exhaustion, with an initial workload of 2% of body mass attached to the tail. Control mice did not perform any exercise but were kept immersed in water for 20 min. Maximum swimming led to reactive oxygen species (ROS) generation in skeletal muscle, as indicated by increased thiobarbituric acid reactive species (TBARS) levels (4062.67 ±1487.10 vs 19,072.48 ± 8738.16 nmol malondialdehyde (MDA)/mg protein, control vs EX1). Exercise also promoted NF-κB activation in soleus muscle. Cytokine secretion following exercise was marked by increased plasma interleukin-6 (IL-6) levels 3 h post-exercise (P < 0.05). Interleukin-10 (IL-10) levels were reduced following exercise and remained reduced 3 h post-exercise (P < 0.05). Plasma levels of other cytokines investigated, monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and interleukin-12 (IL-12), were not altered by exercise. The present findings showed that maximum swimming, as well as other exercise models, led to lipid peroxidation and NF-κB activation in skeletal muscle and increased plasma IL-6 levels. The plasma cytokine response was also marked by reduced IL-10 levels. These results were attributed to exercise type and intensity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preclinical studies have shown that repeated stress experiences can result in an increase in the locomotor response to the subsequent administration of drugs of abuse, a phenomenon that has been termed behavioral cross-sensitization. Behavioral sensitization reflects neuroadaptive processes associated with drug addiction and drug-induced psychosis. Although cross-sensitization between stress- and drug-induced locomotor activity has been clearly demonstrated in adult rats, few studies have evaluated this phenomenon in adolescent rats. In the present study, we determined if the simultaneous exposure to stress and nicotine was capable of inducing behavioral sensitization to nicotine in adolescent and adult rats. To this end, adolescent (postnatal day (P) 28-37) and adult (P60-67) rats received nicotine (0.4 mg/kg, sc) or saline (0.9% NaCl, sc) and were immediately subjected to restraint stress for 2 h once a day for 7 days. The control group for stress was undisturbed following nicotine or saline injections. Three days after the last exposure to stress and nicotine, rats were challenged with a single dose of nicotine (0.4 mg/kg, sc) or saline and nicotine-induced locomotion was then recorded for 30 min. In adolescent rats, nicotine caused behavioral sensitization only in animals that were simultaneously exposed to stress, while in adult rats nicotine promoted sensitization independently of stress exposure. These findings demonstrate that adolescent rats are more vulnerable to the effects of stress on behavioral sensitization to nicotine than adult rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ25-35; 50 µM). Cells (1 x 10(6) cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we demonstrated the importance of telomerase protein expression and determined the relationships among telomerase, endothelin-1 (ET-1) and myofibroblasts during early and late remodeling of parenchymal and vascular areas in usual interstitial pneumonia (UIP) using 27 surgical lung biopsies from patients with idiopathic pulmonary fibrosis (IPF). Telomerase+, myofibroblasts α-SMA+, smooth muscle cells caldesmon+, endothelium ET-1+ cellularity, and fibrosis severity were evaluated in 30 fields covering normal lung parenchyma, minimal fibrosis (fibroblastic foci), severe (mural) fibrosis, and vascular areas of UIP by the point-counting technique and a semiquantitative score. The impact of these markers was determined in pulmonary functional tests and follow-up until death from IPF. Telomerase and ET-1 expression was significantly increased in normal and vascular areas compared to areas of fibroblast foci. Telomerase and ET-1 expression was inversely correlated with minimal fibrosis in areas of fibroblast foci and directly associated with severe fibrosis in vascular areas. Telomerase activity in minimal fibrosis areas was directly associated with diffusing capacity of the lung for oxygen/alveolar volume and ET-1 expression and indirectly associated with diffusing capacity of the lungs for carbon monoxide and severe fibrosis in vascular areas. Cox proportional hazards regression revealed a low risk of death for females with minimal fibrosis displaying high telomerase and ET-1 expression in normal areas. Vascular dysfunction by telomerase/ET-1 expression was found earlier than vascular remodeling by myofibroblast activation in UIP with impact on IPF evolution, suggesting that strategies aimed at preventing the effect of these mediators may have a greater impact on patient outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lopap, found in the bristles of Lonomia obliqua caterpillar, is the first exogenous prothrombin activator that shows serine protease-like activity, independent of prothrombinase components and unique lipocalin reported to interfere with hemostasis mechanisms. To assess the action of an exogenous prothrombin activator reversing the anticoagulant and antihemostatic effect induced by low molecular weight heparin (LMWH), male New Zealand rabbits (N = 20, weighing 3.8-4.0 kg) allocated to 4 groups were anticoagulated with 1800 IU/kg LMWH (iv) over 2 min, followed by iv administration of saline (SG) or recombinant Lopap (rLopap) at 1 µg/kg (LG1) or 10 µg/kg (LG10), 10 min after the injection of LMWH, in a blind manner. Control animals (CG) were treated only with saline. The action of rLopap was assessed in terms of activated partial thromboplastin time (aPTT), prothrombin fragment F1+2, fibrinogen, and ear puncture bleeding time (BT) at 5, 10, 15, 17, 20, 30, 40, 60, and 90 min after initiation of LMWH infusion. LG10 animals showed a decrease of aPTT in more than 50% and BT near to normal baseline. The level of prothrombin fragment F1+2 measured by ELISA had a 6-fold increase with rLopap treatment (10 µg/kg) and was inversely proportional to BT in LMWH-treated animals. Thus, Lopap, obtained in recombinant form using E. coli expression system, was useful in antagonizing the effect of LMWH through direct prothrombin activation, which can be a possible strategy for the reversal of bleeding and anticoagulant events.