170 resultados para hair-plot


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Finasteride is a potent and specific inhibitor of the 5alpha-reductase enzyme in men. Clinical studies have shown that finasteride 1mg/day is effective for promoting hair growth in men with male pattern hair loss. However, there is a concern about the use of finasteride, especially in young fertile patients, because of its action on testosterone metabolism. This paper describes 3 cases of young patients who had very poor seminal quality during finasteride treatment (1 mg/day), and their seminal quality greatly improved after cessation of finasteride treatment. Two of them presented with a left varicocele and the other was obese. We hypothesize that finasteride may not dramatically change the spermatogenesis process in healthy men, but in patients with conditions related to infertility, an amplification of the negative influence of finasteride could occur. Future studies should be done to clarify the extent of the effect of finasteride in patients fertility problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large-scale inventory of trees > 10cm DBH was conducted in the upland "terra firme" rain forest of the Distrito Agropecuário da SUFRAMA (Manaus Free Zone Authority Agricultural District) approximately 65Km north of the city of Manaus (AM), Srasil. Thegeneral appearance and structure of the forest is described together with local topography and soil texture. Thepreliminary results of the Inventory provide a minimum estimate of 698 tree species in 53 families in the 40Km radius sampled, including 17 undescribed species. Themost numerically abundant families, Lecythidaceae, Leguminosae, 5apotaceae and Burseraceae as also among the most species rich families. One aspect of this diverse assemblage is the proliferation of species within certain genera, Including 26 genera In 17 families with 6 or more species or morphospecies. Most species have very low abundances of less than 1 tree per hectare. While more abundant species do exist at densities ranging up to a mean of 12 trees per ha, many have clumped distributions leading to great variation in local species abundance. The degree of similarity between hectare samples based int the Coefficient of Community similarity Index varies widely over different sample hectares for five ecologically different families. Soil texture apparently plays a significant role In determining species composition in the different one hectare plots examined while results for other variable were less consistent. Greater differences in similarity indices are found for comparisons with a one hectare sample within the same formation approximately 40Km to the south. It is concluded that homogeneity of tree community composition within this single large and diverse yet continuous upland forest formation can not be assumed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Estimates of terrestrial biomass depend critically on reliable information about the specific gravity of the wood of forest trees. The study reported on here was carried out in the southern Peruvian Amazon and involved collection of wood samples from trees (70 spp.) in intact forest stands. Results demonstrate the high degree of variability in specific gravity (ovendry weight/green volume) in trees at single locations. Three forest types (swamp, high terrace forest with alluvial soil, and sandy-soil forest) had values close to the average reported for tropical forest woods (.69). Two early successional forest types, which make up as much as 12% of the total vegetated area in this part of the Amazon, had values significantly lower (.40). An increase in specific gravity with increasing age of the tree, which has been reported in some spe cies of tropical-forest woods, is seen in a positive relationship between specific gravity and di ameter for a species prevalent in one plot. Increases in specific gravity with tree and forest age may be significant in estimating changes in carbon stores over time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modeling clays have been used in several ecological experiments and have proved to be an important tool to variables control. The objective of our study was to determine if fruit color in isolated and grouped displays influences the fruit selection by birds in the field using artificial fruits. Data were collected in six plots distributed homogeneously in 3 km long trails with a minimum distance of 0.5 km. We used a paired experimental design to establish our experiments, so that all treatments were available to the local bird community in each plot. Overall, red was more pecked than brown and white. Isolated red and brown displays were significantly more pecked than others display. Even though our study was conducted in small spatial scales, artificial fruits appeared to be efficient in register fruit consumption attempts by bird. Although inconclusive about selective forces that sharp the dynamics of fruit color polymorphisms and choice by frugivorous birds, our findings corroborate recent studies wherein birds showed preferences by high- over low-contrast fruit signals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural regeneration and structure and their relationship to environmental variables were studied in three sections of a gallery forest, in Eastern Mato Grosso, Brazil (14º43′S and 52º21′W). The assumption was that natural regeneration is constrained by environmental determinants at all stages of development of the tree community. The objective was to analyse the forest structure and to verify the relationship between species distribution and abundance at different stages of regeneration and environmental variables. In each section, 47 contiguous (10x10m) permanent plots were established to sample trees (gbh≥15cm), following a systematic design. Seedlings (0.01 to 1m height), saplings (1.01 to 2m) and poles (from 2.01m height to gbh<15cm) were sampled in sub-plots of 1x1m, 2x2m and 5x5m, respectively. In each plot, soil properties, gaps projection, bamboos, rocky cover, declivity and depth of ground watertable were determined. The relationships between the environmental variables with trees and seedling communities were assessed by canonical correspondence analysis. In spite of the sections being near to each other, they presented large differences in floristics, structure and site conditions. The forest soil presented a low cation exchange capacity and a high level of Al saturation. The occurrence of bamboos and gaps and the depth of ground watertable limited the occurrence of poles and trees. The high degree of structural heterogeneity for each regeneration category was related primarily to a humidity gradient; but soil fertility (Ca+Mg) was also a determinant of seedling and sapling communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Orchidaceae is one of the largest botanical families, with approximately 780 genera. Among the genera of this family, Catasetum currently comprises 166 species. The aim of this study was to characterize the root anatomy of eight Catasetum species, verifying adaptations related to epiphytic habit and looking for features that could contribute to the vegetative identification of such species. The species studied were collected at the Portal da Amazônia region, Mato Grosso state, Brazil. The roots were fixed in FAA 50, cut freehand, and stained with astra blue/fuchsin. Illustrations were obtained with a digital camera mounted on a photomicroscope. The roots of examined species shared most of the anatomical characteristics observed in other species of the Catasetum genus, and many of them have adaptations to the epiphytic habit, such as presence of secondary thickening in the velamen cell walls, exodermis, cortex, and medulla. Some specific features were recognized as having taxonomic application, such as composition of the thickening of velamen cell walls, ornamentation of absorbent root-hair walls, presence of tilosomes, composition and thickening of the cortical cell walls, presence of mycorrhizae, endodermal cell wall thickening, the number of protoxylem poles, and composition and thickening of the central area of the vascular cylinder. These traits are important anatomical markers to separate the species within the genus and to generate a dichotomous identification key for Catasetum. Thus, providing a useful tool for taxonomists of this group

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ABSTRACT The analysis of changes in species composition and vegetation structure in chronosequences improves knowledge on the regeneration patterns following land abandonment in the Amazon. Here, the objective was to perform floristic-structural analysis in mature forests (with/without timber exploitation) and secondary successions (initial, intermediate and advanced vegetation regrowth) in the Tapajós region. The regrowth age and plot locations were determined using Landsat-5/Thematic Mapper images (1984-2012). For floristic analysis, we determined the sample sufficiency and the Shannon-Weaver (H'), Pielou evenness (J), Value of Importance (VI) and Fisher's alpha (α) indices. We applied the Non-metric Multidimensional Scaling (NMDS) for similarity ordination. For structural analysis, the diameter at the breast height (DBH), total tree height (Ht), basal area (BA) and the aboveground biomass (AGB) were obtained. We inspected the differences in floristic-structural attributes using Tukey and Kolmogorov-Smirnov tests. The results showed an increase in the H', J and α indices from initial regrowth to mature forests of the order of 47%, 33% and 91%, respectively. The advanced regrowth had more species in common with the intermediate stage than with the mature forest. Statistically significant differences between initial and intermediate stages (p<0.05) were observed for DBH, BA and Ht. The recovery of carbon stocks showed an AGB variation from 14.97 t ha-1 (initial regrowth) to 321.47 t ha-1 (mature forests). In addition to AGB, Ht was also important to discriminate the typologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FUNDAMENTO: Obesidade promove alterações na modulação autonômica cardíaca. OBJETIVO: Investigar a modulação autonômica de crianças obesas e eutróficas por meio de índices de variabilidade da frequência cardíaca (VFC) obtidos por métodos geométricos. MÉTODOS: Foram analisados dados de 133 crianças, com idade entre 8 e 13 anos, divididas em dois grupos: obeso (n = 61) e eutrófico (n = 72), segundo o índice de massa corporal para sexo e idade. Para a análise da VFC, a frequência cardíaca foi captada batimento-a-batimento. Os intervalos RR obtidos foram convertidos em figuras geométricas e, a partir delas, foram calculados o índice triangular (RRtri), interpolação triangular dos intervalos RR (TINN), os índices SD1, SD2 e relação SD1/SD2, obtidos do plot de Poincaré. Análise visual do plot foi também realizada. Realizaram-se o teste t de Student para dados não pareados e o teste de Mann-Whitney, com nível de significância de 5,0%, para análise dos dados. RESULTADOS: Em crianças obesas, foram observadas reduções dos índices RRtri (0,0730 vs 0,1084 [mediana]), TINN (171,80 ± 55,08 vs 218,26 ± 51,12), SD1 (19,93 ± 9,10 vs 24,10 ± 8,03) e SD2 (51,63 ± 16,53 vs 69,78 ± 17,19). A relação SD1/SD2 não apresentou diferenças significantes (0,3781 ± 0,12 vs 0,3467 ± 0,08). A análise visual do plot, em crianças obesas, mostrou menor dispersão dos intervalos RR tanto batimento-a-batimento, como a longo prazo, indicando menor VFC. CONCLUSÃO: Crianças obesas apresentaram modificações no sistema nervoso autônomo, caracterizadas por reduções na atividade parassimpática e na variabilidade global.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Não existe consenso sobre a estratégia nutricional mais adequada para tratar a Síndrome Metabólica (SM), de tal forma que ocorra redução do risco cardiovascular. O presente estudo foi desenhado para avaliar a força de evidência dos benefícios de diferentes intervenções nutricionais na remissão da SM. A busca virtual foi realizada nas bases de dados Medline, Cochrane Library e PubMed, de ensaios clínicos randomizados publicados no período entre 1999 a 2009, em qualquer língua, em indivíduos com 18 anos ou mais e diagnóstico de SM, independente do critério. O operador booleano and foi utilizado na combinação dos MeSH terms "Metabolic Syndrome", "Síndrome x Metabólica" e "Metabolic Syndrome X"; dos entry terms "Dysmetabolic Syndrome X", Metabolic Cardiovascular Syndrome", "Metabolic X Syndrome", "Syndrome X, Metabolic" adicionados dos termos "diet", "intervention and diet", "treatment and diet" e "supplementation". Para cada estudo incluído na revisão foi estimada a Prevalência de SM e o Cálculo da Eficácia após o período de seguimento. Medidas de risco relativo para cada estudo foram descritas pelo Forest Plot. Foram identificados 131 artigos, os quais após critérios de elegibilidade resultaram em 15 estudos. Estes foram separados em quatro grupos: dieta normocalórica associada a exercícios; dieta normocalórica isolada; dieta hipocalórica associada a exercícios; e dieta hipocalórica isolada. Os ensaios com dieta hipocalórica associada à prática de exercícios apresentaram valores mais elevados de eficácia, colaborando para ressaltar os aspectos globais da mudança do estilo de vida no tratamento da SM, onde a alimentação saudável e reduzida em calorias deve ser complementada com a prática de atividade física.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FUNDAMENTO: A variabilidade da frequência cardíaca (VFC) é um importante indicador da modulação autonômica da função cardiovascular. A diabetes pode alterar a modulação autonômica danificando as entradas aferentes, dessa forma aumentando o risco de doenças cardiovasculares. Foram aplicados métodos analíticos não lineares para identificar os parâmetros associados com VFC indicativos de alterações na modulação autonômica da função cardíaca em pacientes diabéticos. OBJETIVO: Analisamos as diferenças nos padrões da VFC entre pacientes diabéticos e controles saudáveis pareados por idade, utilizando métodos não-lineares. MÉTODOS: Plot de Poincaré Lagged, autocorrelação e análise de flutuação destendenciada foram aplicados para analisar a VFC em registros de eletrocardiograma (ECG). RESULTADOS: A análise do gráfico de Poincaré lagged revelou alterações significativas em alguns parâmetros, sugestivas de diminuição da modulação parassimpática. O expoente de flutuação destendencionada derivado de um ajuste em longo prazo foi maior que o expoente em curto prazo na população diabética, o que também foi consistente com a diminuição do input parassimpático. A função de autocorrelação do desvio dos intervalos inter-batimento exibiu um padrão altamente correlacionado no grupo de diabéticos em comparação com o grupo controle. CONCLUSÃO: O padrão de VFC difere significativamente entre pacientes diabéticos e indivíduos saudáveis. Os três métodos estatísticos utilizados no estudo podem ser úteis para detectar o início e a extensão da neuropatia autonômica em pacientes diabéticos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Smoking consumption alters cardiac autonomic function. Objective: Assess the influence of the intensity of smoking and the nicotine dependence degree in cardiac autonomic modulation evaluated through index of heart rate variability (HRV). Methods: 83 smokers, of both genders, between 50 and 70 years of age and with normal lung function were divided according to the intensity of smoking consumption (moderate and severe) and the nicotine dependency degree (mild, moderate and severe). The indexes of HRV were analyzed in rest condition, in linear methods in the time domain (TD), the frequency domain (FD) and through the Poincaré plot. For the comparison of smoking consumption, unpaired t test or Mann-Whitney was employed. For the analysis between the nicotine dependency degrees, we used the One-way ANOVA test, followed by Tukey's post test or Kruskal-Wallis followed by Dunn's test. The significance level was p < 0,05. Results: Differences were only found when compared to the different intensities of smoking consumption in the indexes in the FD. LFun (62.89 ± 15.24 vs 75.45 ± 10.28), which corresponds to low frequency spectrum component in normalized units; HFun (37.11 ± 15.24 vs 24.55 ± 10.28), which corresponds to high frequency spectrum component in normalized units and in the LF/HF ratio (2.21 ± 1.47 vs 4.07 ± 2.94). However, in the evaluation of nicotine dependency, significant differences were not observed (p > 0.05). Conclusion: Only the intensity of smoking consumption had an influence over the cardiac autonomic modulation of the assessed tobacco smokers. Tobacco smokers with severe intensity of smoking consumption presented a lower autonomic modulation than those with moderate intensity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the results of a pot and plot experiment which was carried out to determine the influence of sulphur and boron and the effect seed inoculation with Rhizobium meliloti in the yield of alfafa. Sulphur was applied as flower of sulphur at the rates of 1,000 and 2,000 kg por hectare; boron was employed in the proportion of 15 kg of borax per hectare; both sulphur and boron were distributed broadcast before planting; the experimental design chosen for the field trial was a latin square of 6 x 6 with the following treatments: Number Treatment 1 Control 2 One dosis S + inoculation 3 Two dosis S +inoculation 4 One dosis S + B + inoculation 5 B + inoculation 6 inoculation The crop supplied four cuttings in an eleven months period. The pot experiment nearly confirmed the plot one. The following conclusions can be drawn: 1. The classification of treatments in a decrescent order was: l.o - two doses S + inoculation; 2.o - one dosis S +inoculation, S + B + inoculation, and B + inoculation (these treatmente were not statistically different); 3.o - control; 4.o - inoculation; 2 The vield due to the treatment two dosis S + inoculation was 22 per cent higher than the control one, a fact that suggests that the S supply in the soil studied ("terra roxa misturada") is not sufficient for the total requirements of alfafa; 3. From an economical point of view the best treatment was: one dosis B + inoculation which permits a net gain of Cr$ 12.527,30 per hectare per year; 4. Based on the mentioned results we recommend in soils of same type the following fertilization for alfafa. 5 tons limestone/hectare 300 kg serranafosfato and 600 kg hiperfosfato/ha 300 kg muriate of potash/ha 15 kg borax/ha and a medium organic manuring if the soil is very poor in organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In several cotton crops areas of the State of S. Paulo it was observed, during the years of 1948, 1949, and 1951, the appearance of a purple color of the leaves; the color appears in the opening of the bolls and was correlated with a decrease of production. The opinions concerning the cause of such abnormality were very different and sometimes contradictory; certain investigators attributed the disease to insect attack, others to bad climatic conditions whereas others to a potassium deficiency now called "fome de potássio" (potash hunger); our ideas on the subject is another one. We think that the disease is caused by lack of a suitable supply of magnesium. This opinion is largely based on the syntomatology found in the literature. To study the problem, several experiments were carried out, namely: 1. pot experiments using soil collected in areas where the disorder had appeared; 2. pot experiments controlling the water supply; 3. sand culture experiments omitting either potassium or magnesium; 4. leaf analysis of plant matrial collected troughout the Piracicaba County; 5. plot experiments with the varieties Texas, Express, and I.A. 817 Campinas. The first four experiments were discussed elsewhere. To study the point 5 an experiment was carried out, with the following treatments : 1 - NPKCaMg (no K added) - Mg supplied as MgSO4 (a soluble form); 2 -NPKCa (no Mg added); 3 -NPKCaMg (complete) - Mg supplied as MgSO4; 4 - NPKCaMg (complete) - Mg supplied as dolomitic limestone (a slightly soluble form) as a rate 2.5 higher than in the treatment 1 and 3. Organic matter as cottonseed meal was applied in the proportion of 500 kg per hectare. The experimental design was randomized blocks with 4 replications and the results can be summarized as follows: 1 the I.A 817 variety was the most strongly affected by the physiological disorder, with severe decrease in yield; 2. the disease occurred more frequently in the minus magnesium treatment; 3. dolomitic limestone is so effective as magnesium sulfate in the control of the disease as well in the raising of the yield; 4. in the minus K treatment it was observed a marked occurrence of the typical symptoms of potassium deficiency (cotton rust); 5. magnesium was actually, in the experimental conditions the responsible for the purple color (vermelhão) of the cotton leaves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper relates the results of an experiment designed to study the comparative effects of several phosphates applied to corn crops. The following phosphates were applied to a latin square of 6x6: Latif (a rock phosphate), fospal, superphosphate, fertifos, hiperfosfato and serranafosfato (a fusion phosphate). The nutrients were employd at the rates of 200 kg of N (as Chilean nitrate), 200kg of K2O (as muriate of potash) and 200 kg of P205. To correct the acidity and to improve the poor physical conditions of the sandy soil studied limestone (450 kg/Ha) and cotton seed meal (900 kg/Ha) were added to all plots; liming was made one month in advance to the planting. In the second year, in the same place, the split-plot technique was used: half plot received only N and K20 whereas the other half received the same treatment as the year before. The results can be summarized as follows: 1. in the first year, superphosphate of lime, produced better results than the other phosphates; there was no significant difference among fertifos, serranafosfato, and hiperfosfato but these phosphates proved to be superior to fospal and Latif; 2. in the second year, superphosphate, fertifos and serranafosfato produced practically the same effect, being better than hiperfosfato, fospal, and Latif which did not differ signicantly; 3. the increase in yield due to the reapplication of phosphates to the half plots was not advantageous under an economic point of view; however, it is interesting to note that the yield was still benefited in spite of the heavy doses of phosphates applied the year before.