75 resultados para flash fermentation
Resumo:
This paper describes a chromatographic method to fractionate volatile oils and to identify their sesquiterpenic constituents. The fractionation process includes flash chromatography over silica gel and chromatography over silica gel/AgNO3, utilising pentane, CH2Cl2 and/or acetone as eluents. GC chromatograms were obtained in order to get the relative percentage of each constituent in the volatile oils, to get the retention time value of them as well as to analyse and combine the fractions eluted from the columns. Such procedure afford mixtures of sesquiterpenes which are analysed by GC/MS, 13C and ¹H NMR.
Resumo:
Laser excitation of 0.01 M solutions of 1-indanone (Ia), 1-tetralone (Ib), 1-benzosuberone (Ic), and their a,a -dimethyl derivatives IIa-c, respectively, in benzene, produced transients with maximum absorption at 425 nm, and lifetimes ranging from 62 ns (IIa) to 5.5ms (Ic). Quenching studies using well known triplet quenchers such as 1,3-cyclohexadiene and oxygen demonstrated the triplet nature of these transients. In the presence of hydrogen donors, such as 2-propanol, the triplet state decay of the ketones Ia-c leads to the formation of the corresponding ketyl radicals, i.e. IIIa-c, which show absorption spectra very similar to the parent ketone, with lmax at 430 nm and lifetime in excess of 20 ms. Steady state irradiations show that the a,a -dimethyl ketones IIa and IIc form ortho-alkyl benzaldehydes probably derived from an initial a-cleavage of the corresponding triplet excited states.
Resumo:
A simple method of home made preparation and physical-chemical characterization of orange wine was investigated. Saccharomyces cerevisiae was used as inoculum for wine-making by fermentation. Chemical compositions related to the aroma components seems to be very similar between grape and orange wines.
Resumo:
Pretreatment of lignocellulosic materials is essential for bioconversion because of the various physical and chemical barriers that greatly inhibit their susceptibility to bioprocesses such as hydrolysis and fermentation. The aim of this article is to review some of the most important pretreatment methods developed to date to enhance the conversion of lignocellulosics. Steam explosion, which precludes the treatment of biomass with high-pressure steam under optimal conditions, is presented as the pretreatment method of choice and its mode of action on lignocellulosics is discussed. The optimal pretreatment conditions for a given plant biomass are defined as those in which the best substrate for hydrolysis is obtained with the least amount of soluble sugars lost to side reactions such as dehydration. Therefore, pretreatment optimization results from a compromise between two opposite trends because hemicellulose recovery in acid hydrolysates can only be maximized at lower pretreatment severities, whereas the development of substrate accessibility requires more drastic pretreatment conditions in which sugar losses are inevitable. To account for this heterogeneity, the importance of several process-oriented parameters is discussed in detail, such as the pretreatment temperature, residence time into the steam reactor, use of an acid catalyst, susceptibility of the pretreated biomass to bioconversion, and process design.
Resumo:
This article presents a brief historical outline of cheese manufacture. Chemical, biochemical and microbiological aspects are presented: the main constituents of curd, the reactions involved in the development of flavour, and the role of micro-organisms and enzymes in the fermentation and maturation processes. A brief description of the characteristics of some cheeses is also given.
Resumo:
The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using ²H and ¹H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C3, C4, and CAM biosynthetic mechanisms, blends of C3 and C4 (agrins) and synthetic acetic acid.
Resumo:
The production of cashew apple wine has the purpose of minimizing the wastage in the Brazilian cashew production. Knowing that the cashew apple fermentation produces a good cashew wine, a study of alcoholic fermentation kinetics of the cashew apple and the physico-chemical characterization of the product were made. The cashew wine was produced in an stirred batch reactor. The results of the physico-chemical analysis of volatiles, residual sugars, total acidity and pH of cashew wine showed that their concentrations were within the standard limits established by the Brazilian legislation for fruit wines.
Resumo:
The present study evaluated the influence of nitrogen, phosphorus and ºBrix on the production of MSCT through a factorial design methodology and analysis of response surface. The objective was to propose a statistically significant probabilistic model for the alcoholic fermentation. In order to obtain less MSCT, the medium under fermentation needs to present low sugar concentration. It was observed that phosphorus and nitrogen, even with no significant individual effects, presented interactions with each other decreasing the production of MSCT, which improves alcohol quality.
Resumo:
Pectic substances are structural heteropolysaccharides that occur in the middle lamellae and primary cell walls of higher plants. They are composed of partially methyl-esterified galacturonic acid residues linked by alpha-1, 4-glycosidic bonds. Pectinolytic enzymes are complex enzymes that degrade pectic polymers and there are several classes of enzymes, which include pectin esterases, pectin and pectate lyases and polygalacturonases. Plants, filamentous fungi, bacteria and yeasts are able to produce pectinases. In the industrial world, pectinases are used in fruit juice clarification, in the production of wine, in the extraction of olive oil, fiber degumming and fermentation of tea, coffee and cocoa.
Resumo:
Rate constants for the quenching of 1,3-indandione (1) triplet by olefins and by hydrogen and electron donors were obtained employing the laser flash photolysis technique in benzene solution. These rate constants ranged from 2.5x10(5) Lmol-1s-1 (for 2-propanol) to 5.9x10(9) Lmol-1s-1 (for DABCO). From the quenching rate constants by 1,3-cyclohexadiene, trans- and cis-stilbene a value between 49.3 and 52.4 kcal/mol was estimated for the energy of the triplet state of 1,3-indandione. The npi* character of this triplet state was evidenced by the quenching rate constants obtained when typical hydrogen donors were employed as quenchers. For 2-phenyl-1,3-indandione (2, R=phenyl) a fast Norrish type I reaction is operating which prevents the determination of kinetic and spectroscopic data of its triplet state.
Resumo:
This work studied the pretreatment of sugarcane molasses (CM) and corn steep liquor (CS) for the production of carotenoids by Sporidiobolus salmonicolor (CBS 2636). The acid pretreatment removed less micronutrients than that with activated carbon and led to high removals of Cu and Mn. Reduction in optical density of the prepared medium and removal of glucose from it were 22% and 7% for CM and 95% and 38% for CS, respectively. Total carotenoids obtained with substrates pretreated with acids (541 mg/L) were higher than the results obtained when the medium was treated with activated carbon (208 mg/L).
Resumo:
Studies on identification of compounds that make up the aroma and flavor in wines involve research evaluating mainly the influence of terpenes, esters, lactones and alcohols upon these sensory characteristics. However, carbonylic compounds (CC) play an important role concerning the substances that impact aroma to these drinks. Their origin is reported to be linked to the grape's chemical composition, must fermentation or micro-oxidation occurring during storage in barrels. Some CCs, like E-ionone, E-damascenone, siryngaldehyde, can contribute a pleasant aroma and improve the wine quality whereas others are responsible for unpleasant characteristics (acetaldehyde, furfural, 5-hydroxy-methyl furfural, diacetil, E-non-2-enal, etc). A fraction of CCs present is associated with bisulfite ions in the form of hydroxyalkylsulfonic acids. Some of them are stable and play an important role in determining wine quality. The reaction involving the formation of this aduct commonly occurs with CCs of low molar mass, such as formaldehyde and acetaldehyde. The reaction involving CCs with more than three carbon atoms demands further studies.
Resumo:
There is presently much interest in the clean and efficient generation of energy by proton exchange membrane fuel cells (PEMFC), using hydrogen as fuel. The generation of hydrogen by the reforming of other fuels, anaerobic fermentation of residual waters and other methods, often produce contaminants that affect the performance of the cell. In this work, the effect of gaseous SO2 and NO2 on the performance of a H2/O2 single PEMFC is studied. The results show that SO2 decreases irreversibly the performance of the cell under operating conditions, while NO2 has a milder effect that allows the recovery of the system.
Resumo:
In the present work, the influence of the amount of nitrogen and phosphorus and degrees Brix on the yield and productivity of alcoholic fermentation has been evaluated. The methodology used was factorial design and response surface analysis. Within the range studied only for phosphorus a statistically significant effect was observed. The broth of sugar cane of the CB 453 variety already possessed enough nitrogen for the fermentation. The mathematical and empirical model was validated for productivity and not for yield. The concentration of alcohol produced in the fermentation was not enough to cause cellular growth inhibition.
Resumo:
Several reasons motivated the development of new generations of antibiotics, such as their high ability to develop resistance to virtually all kinds of anti-infective agents and the crescent market demand for new drugs to treat special demanding patients. After penicillin discovery, several antibiotics were developed from fungal metabolites, since antibacterial secondary metabolites consists on a fungal endogenous protective mechanism against natural competitors. The aim of this review is to present the structural diversity of antibacterial and antifungal metabolites produced by fungi, mentioning sources of fungal isolates, cultivation process and details on the scope of their antibiotic activity.