50 resultados para first-lactation milk yield
Resumo:
Oxytocin (OT), a nonapeptide, was the first hormone to have its biological activities established and chemical structure determined. It was believed that OT is released from hypothalamic nerve terminals of the posterior hypophysis into the circulation where it stimulates uterine contractions during parturition, and milk ejection during lactation. However, equivalent concentrations of OT were found in the male hypophysis, and similar stimuli of OT release were determined for both sexes, suggesting other physiological functions. Indeed, recent studies indicate that OT is involved in cognition, tolerance, adaptation and complex sexual and maternal behaviour, as well as in the regulation of cardiovascular functions. It has long been known that OT induces natriuresis and causes a fall in mean arterial pressure, both after acute and chronic treatment, but the mechanism was not clear. The discovery of the natriuretic family shed new light on this matter. Atrial natriuretic peptide (ANP), a potent natriuretic and vasorelaxant hormone, originally isolated from rat atria, has been found at other sites, including the brain. Blood volume expansion causes ANP release that is believed to be important in the induction of natriuresis and diuresis, which in turn act to reduce the increase in blood volume. Neurohypophysectomy totally abolishes the ANP response to volume expansion. This indicates that one of the major hypophyseal peptides is responsible for ANP release. The role of ANP in OT-induced natriuresis was evaluated, and we hypothesized that the cardio-renal effects of OT are mediated by the release of ANP from the heart. To support this hypothesis, we have demonstrated the presence and synthesis of OT receptors in all heart compartments and the vasculature. The functionality of these receptors has been established by the ability of OT to induce ANP release from perfused heart or atrial slices. Furthermore, we have shown that the heart and large vessels like the aorta and vena cava are sites of OT synthesis. Therefore, locally produced OT may have important regulatory functions within the heart and vascular beds. Such functions may include slowing down of the heart or the regulation of local vascular tone.
Resumo:
Milk and egg matrixes were assayed for aflatoxin M1 (AFM1) and B1 (AFB1) respectively, by AOAC official and modified methods with detection and quantification by thin layer chromatography (TLC) and high performance thin layer chromatography (HPTLC). The modified methods: Blanc followed by Romer, showed to be most appropriate for AFM1 analysis in milk. Both methods reduced emulsion formation, produced cleaner extracts, no streaking spots, precision and accuracy improved, especially when quantification was performed by HPTLC. The use of ternary mixture in the Blanc Method was advantageous as the solvent could extract AFM1 directly from the first stage (extraction), leaving other compounds in the binary mixture layer, avoiding emulsion formation, thus reducing toxin loss. The relative standard deviation (RSD%) values were low, 16 and 7% when TLC and HPTLC were used, with a mean recovery of 94 and 97%, respectively. As far as egg matrix and final extract are concerned, both methods evaluated for AFB1 need further studies. Although that matrix leads to emulsion with consequent loss of toxin, the Romer modified presented a reasonable clean extract (mean recovery of 92 and 96% for TLC and HPTLC, respectively). Most of the methods studied did not performed as expected mainly due to the matrixes high content of triglicerides (rich on saturated fatty acids), cholesterol, carotene and proteins. Although nowadays most methodology for AFM1 is based on HPLC, TLC determination (Blanc and Romer modified) for AFM1 and AFB1 is particularly recommended to those, inexperienced in food and feed mycotoxins analysis and especially who cannot afford to purchase sophisticated (HPLC,HPTLC) instrumentation.
Resumo:
A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.
Resumo:
The rheological behavior and density of goat milk was studied as a function of solids concentration (10.5 to 50.0%) and temperature (273 to 331 k). Newtonian behavior was observed for values of total solids (TS) between 10.5 and 22.0% and temperatures from 276 to 331 k changing to pseudoplastic behavior without yield stress for TS from 25.0 to 39.4% at the same range of temperature. Goat milk with TS between 44.3 to 50.0% and temperatures of 273 to 296 k showed yield stress in addition to pseudoplastic behavior. At 303 to 331 k the power law model was observed again, without yield stress. The density of goat milk ranged from 991.7 to 1232.4 kg.m-3.
Resumo:
The objective of this study was to obtain babassu coconut milk powder microencapsulated by spray drying process using gum Arabic as wall material. Coconut milk was extracted by babassu peeling, grinding (with two parts of water), and vacuum filtration. The milk was pasteurized at 85 ºC for 15 minutes and homogenized to break up the fat globules, rendering the milk a uniform consistency. A central composite rotatable design with a range of independent variables was used: inlet air temperature in the dryer (170-220 ºC) and gum Arabic concentration (10-20%, w/w) on the responses: moisture content (0.52-2.39%), hygroscopicity (6.98-9.86 g adsorbed water/100g solids), water activity (0.14-0.58), lipid oxidation (0.012-0.064 meq peroxide/kg oil), and process yield (20.33-30.19%). All variables influenced significantly the responses evaluated. Microencapsulation was optimized for maximum process yield and minimal lipid oxidation. The coconut milk powder obtained at optimum conditions was characterized in terms of morphology, particle size distribution, bulk and absolute density, porosity, and wettability.