47 resultados para excess post-exercise oxygen consumption
Resumo:
The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.
Resumo:
The aim of this study was to measure the energy expenditure for locomotor activities usually performed by soccer referees during a match (walking, jogging, and running) under laboratory conditions, and to compare forward with backward movements. The sample was composed by 10 male soccer referees, age 29±7.8 years, body mass 77.5±6.2 kg, stature 1.78±0.07 m and professional experience of 7.33±4.92 years. Referees were evaluated on two separate occasions. On the first day, maximal oxygen uptake (VO2max) was determined by a maximal treadmill test, and on the second day, the oxygen consumption was determined in different speeds of forward and backward movements. The mean VO2max was 41.20±3.60 mL·kg-1·min-1 and the mean heart rate achieved in the last stage of the test was 190.5±7.9 bpm. When results of forward and backward movements were compared at 1.62 m/s (walking speed), we found significant differences in VO2, in metabolic equivalents, and in kcal. However, the same parameters in forward and backward movements at jogging velocities (2.46 m/s) were not significantly different, showing that these motor activities have similar intensity. Backward movements at velocities equivalent to walking and jogging are moderate-intensity activities, with energy expenditure less than 9 kcal. Energy expenditure was overestimated by at least 35% when calculated by mathematical equations. In summary, we observed that backward movements are not high-intensity activities as has been commonly reported, and when calculated using equations available in the literature, energy expenditure was overestimated compared to the values obtained by indirect calorimetry.