133 resultados para crosslinking reagents
Resumo:
A new approach for teaching in basic experimental organic chemistry is presented. Experimental work goes on parallel to theoretical lectures leading to an immediate application of theoretical concepts transmitted therein. One day/week is dedicated exclusively to the organic laboratory. Reactions are proposed as problems to be solved; the student has to deduce the structure of the product on the basis of his observations, the analytical data and his mechanistical knowledge. 70 different experiments, divided in 7 thematical chapters, are presented. All experiments require the analysis and discussion of 1H and 13C NMR, IR and UV spectra. Additional questions about each reaction have to be answered by the student in his written report. Laboratory safety is garanteed by the exclusion or substitution of hazardous and toxic reagents. Microscale preparations are adopted in most cases to lower the cost of materials and the amount of waste. Recycling of many reaction products as starting materials in other experiments reduces the need for commercial reagents and allows the execution of longer reaction sequences. Only unexpensive standard laboratory equipment and simple glassware are required. All experiments include instructions for the save treatment or disposal of chemical waste.
Resumo:
The physical-chemical process of swelling in water-based gel of natural polymers is investigated with the purpose of applying these systems to biomedical materials for controlled release of drugs. In this work we develop a study about the sol-gel transition of solutions of chitosan in the presence of formaldehyde and glutaraldehyde like crosslinking agents and we have determined the effect of many aditives in the time of gelification from the elaborated sistems. The phisical-chemistry process of swelling of the formed gels was evaluated in function of the degree of crosslinking of the incorporated aditives and the pH. Gelling times of chitosan solutions were obtained using viscosimetric measurement, in the pre-gel state, as well as condutivity ones.The results obtained suggest that component concentration modifies the kinetic profile of the transition and the swelling behavior. Regarding H+ content, the gels were highly susceptible to swelling in acidic conditions, which characterize this system as pH - sensitive.
Resumo:
In this work we intend to eliminate the idea that laboratory exercises seem like cookbooks. That is, exercises shall be presented as a problematic situation. Based on observation and experimentation, the students should determine the E-Z configuration of maleic and fumaric acids. The basis of this laboratory exercise is the acid-catalyzed isomerization of maleic acid to fumaric acid. Students are given the starting material, reagents and the experimental procedure. They are told that the starting material is a dicarboxylic acid containing a C=C double bond of formula C4H4O4. Students determine melting points, solubilities, acidity and chromatographic patterns for both the starting material and the product, so that a configuration of each acid can be proposed. This type of experiment yields excellent results, because the students are left to deduce that maleic acid is less stable than fumaric acid. Additionally, they conclude that maleic acid is the "Z" isomer and fumaric acid is the "E" isomer. Finally, this laboratory exercise allows the students to develop simultaneously their critical-thinking skills with the respective laboratory techniques and not to see chemistry as recipes to be followed.
Resumo:
The effects of chloride and nitrate anions and their respective concentrations, as well as urea presence, on solid phase morphologies were investigated. Zinc hydroxide carbonate was prepared by aging diluted zinc salt solution in presence of urea at 90ºC. Samples were identified by X-ray powder diffractograms showing the characteristic patterns of hydrozincite. The crystallinity was correlated with the concentrations of reagents. Spherulitic-type aggregates and single acicular particles were obtained from diluted chloride and nitrate solutions while porous aggregates of uniform size were formed from solutions with high chloride and urea concentrations.
Resumo:
In the present work four different analytical methodologies were studied for the determination of iron and titanium in Portland cement. The cement samples were dissolved with hot HCl and HF, being compared Fe and Ti concentrations through four analytical methods: molecular absorption spectrophotometry using the reagents 1,2-hydroxybenzene-3,5-disulfonic acid (Tiron) and the 5-chloro-salicylic acid (CSA), inductively coupled plasma atomic emission spectrometry (ICP-AES) and flame atomic absorption spectrophotometry (FAAS). In the spectrophotometric determinations were studied pH conditions, reagents addition order, interferences, amount of reagents, linear range and stability of the system. In the techniques of ICP-AES and FAAS were studied the best lines, interferences, sensibility and linear range. The obtained results were compared and the agreement was evaluated among the methods for the determination of the metals of interest.
Resumo:
In this paper we describe a powerful methodology for the regiospecific construction of polysubstituted aromatic and heteroaromatic compounds. The DoM reaction (direct ortho-metalation) comprises the deprotonation in position ortho of a aromatic or heteroaromatic containing DMG (directed metalation group) by strong bases, normally an alkyllithium reagent, leading to an ortho-lithiated species. These species, upon treatment with electrophilic reagents, gives 1,2 disubstituted products.
Resumo:
The reaction between hydroxy-terminated polybutadiene and isophorone diisocyanate constitutes the base of the curing process of the most composite solid propellant used in the propulsion of solid rocket propellant. In this work, differential scanning calorimetry and viscosity measurements were used to evaluate the effect of the ferric acetylacetonate catalyst concentration on the reaction between HTBR and IPDI. These analyses show one exotherm, which shifts to lower temperatures as the catalyst concentration increases. The viscosity analyses show that the increase of temperature causes, at first, a reduction in the mixture viscosity, reaching a minimum range called gelification region (increasing the crosslinking density).
Resumo:
Probably one of the most difficult and challenging aspects of measuring trace metals in natural waters is to avoid contamination during sampling, manipulation and analysis. This work discusses how to avoid contamination using simple procedures, and considers alternative methods to purify deionised water and low grade reagents to enable accurate determination of trace metals in natural waters in a common laboratory. Measurements were performed by cathodic stripping voltammetry and copper was used as a model metal to test the procedures. It was possible to evaluate copper speciation in natural waters even when total dissolved copper concentration was as low as 1.5 nmol L-1. The methods' accuracy was confirmed by analysis of certified seawater.
Resumo:
The use of sol-gel materials to develop new biosensors has received great attention due to its characteristics and versatility of sol-gel process. An overview is presented of the state-of-the-art of electrochemical biosensors employing sol-gel materials. Low-temperature, porous sol-gel ceramics represent a new class for the immobilization of biomolecules. The rational design of sol-gel sensing materials, based on the judicious choice of the starting alkoxide, encapsulated reagents, and preparation conditions, allows tailoring of material properties in a wide range, and offers great potential for the development of electrochemical biosensors.
Resumo:
The importance of chiral alcohols as starting materials for the production of fine chemicals and as useful chirons for the building of several interesting molecules or natural products is reported. The useful and common methods of asymmetric reduction such as the chemical (with organoboron or organoaluminum reagents) and the catalytic ones (with ruthenium or rhodium complexes) for preparation of chiral alcohols are described; even the newer and much more rare electrocatalytic methods are reported.
Resumo:
A synthesis of artificial sweetener dulcin starting from nitrobenzene was elaborated for undergraduate organic laboratory course. Paracetamol and phenacetin, both physiologically active analgesic compounds, were also prepared as intermediates. Besides a large scope of discussion subjects related with organic synthesis, interesting lectures about analgesics and sweeteners may also be performed in this project. The advantage of this project is the adaptability according to the conditions offered by the course, i.e., convenience and/or availability of time and reagents.
Resumo:
Sequential extraction is not totally effective to dissolve distinct forms of trace elements. The extractive solution, for example, can dissolve less of the target fraction and more than another not wished fraction. The goal of this work is to compare the extraction of native iron with three sequential extraction methods of the heavy metals, using three soils with different physical chemistry characteristics: a histosol, an oxisol, and a mollisol. The results obtained in this work demonstrate that a smaller relation soil/extractor results in a larger extraction in almost all phases. The use of many stages of the sequential extraction, with the purpose of more association of the metal with different components of the soil, can result, among other things, in modification of the substratum by the action of the reagents used, besides reducing the selectivity of the more specific extractors. Readsorption and redistribution of the heavy metals could have happened with larger intensity in the fraction where hidroxilamine was used with higher temperature. Sequential extraction of iron, without enrichment of soil samples, in the respective fractions in each method, it was important to better understand the behavior of the reagents considered specific to each form of the metal in soil.
Resumo:
This review describes the use of catalytic asymmetric aldol reactions of silyl enol ethers and silyl (thio)ketene acetals with aldehydes (the Mukaiyama aldol reaction) in order to illustrate its synthetic utility. A variety of Lewis acid and basic reagents were employed for catalytic aldol reactions with high diastereo- and enantioselectivities. The origins of the selectivity of these reactions are discussed and some representative examples of their application in the synthesis of natural products are presented. New developments in chiral heterobimettalic lanthanoid catalysis and enantioselective aldol reactions in aqueous media are also included.
Resumo:
To improve tannin assay in cashew apple, several parameters were examined, including (1) extraction solvents, (2) effects of water and boiling time on butanol acid reaction and (3) correlation between vanillin and butanol acid assay of tannin in cashew apples. The 50-70% acetone extracted the greatest amount of tannin from cashew apples. Concentrations of water in butanol reagents were adjusted and boiling time of butanol reaction was reduced at 15 min. Tannin of unripe cashew apples was purified on Sephadex LH-20, aiming to obtain tannin standard for butanol assay. The vanillin assay presented high correlation with the butanol acid assay.
Resumo:
The oxidation of alcohols to obtain ketones, aldehydes or carboxylic acids is a fundamental transformation in organic synthesis and many reagents are known for these conversions. However, there is still a demand for mild and selective reagents for the oxidation of alcohols in the presence of other functional groups. As an alternative, the nitroxyl radical TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) has been demonstrated to be a useful reagent for the transformation of alcohols. The oxidation of alcohols using TEMPO is often efficient, fast, selective, made in mild conditions and can tolerate sensitive functional groups. In this article we report different methodologies using TEMPO in the oxidation of alcohols.