153 resultados para contamination in soils
Resumo:
The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure) and ammonia-oxidizing Archaea (richness and community composition) were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009) from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old), agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE) using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA) of Archaea (306 sequences), the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366), followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715), crops (H' = 1.4613; D = 0.3309) and secondary forest (H' = 0.8633; D = 0.5405). All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 %) previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.
Resumo:
Rice in Rio Grande do Sul State is grown mostly under flooding, which induces a series of chemical, physical and biological changes in the root environment. These changes, combined with the presence of rice plants, affect the availability of exchangeable ammonium (NH4+) and pH of soil solution, whereas the dynamics of both variables can be influenced by soil salinity, a common problem in the coastal region. This study was conducted to evaluate the dynamics of exchangeable NH4+ and pH in the soil solution, and their relation in the solution of Albaqualf soils with different salinity levels, under rice. Four field experiments were conducted with soils with exchangeable Na percentage (ESP) of 5.6, 9.0, 21.2, and 32.7 %. Prior to flooding, soil solution collectors were installed at depths of 5, 10 and 20 cm. The soil solution was collected weekly, from 7 to 91 days after flooding (DAF), to analyze exchangeable NH4+ and pH in the samples. Plant tissue was sampled 77 DAF, to determine N uptake and estimate the contribution of other N forms to rice nutrition. The content of exchangeable NH4+ decreased over time at all sites and depths, with a more pronounced reduction in soils with lower salinity levels, reaching values close to zero. A possible contribution of non-exchangeable NH4+ forms and N from soil organic matter to rice nutrition was observed. Soil pH decreased with time in soils with ESP 5.6 and 9.0 %, being positively correlated with the decreasing NH4+ levels at these sites.
Resumo:
The increase of organic acids in soils can reduce phosphorus sorption. The objective of the study was to evaluate the competitive sorption of P and citrate in clayey and sandy loam soils, using a stirred-flow system. Three experiments were performed with soil samples (0-20 cm layer) of clayey (RYL-cl) and sandy loam (RYL-sl) Red Yellow Latosols (Oxisols). In the first study, the treatments were arranged in a 2 × 5 factorial design, with two soil types and five combinations of phosphorus and citrate application (only P; P + citrate; and citrate applied 7, 22, 52 min before P); in the second, the treatments were arranged in a 2 × 2 factorial design, corresponding to two soils and two forms of P and citrate application (only citrate and citrate + P); and in the third study, the treatments in a 2 × 2 × 6 factorial design consisted of two soils, two extractors (citrate and water) and six incubation times. In the RYL-cl and RYL-sl, P sorption was highest (44 and 25 % of P application, respectively), in the absence of citrate application. Under citrate application, P sorption was reduced in all treatments. The combined application of citrate and P reduced P sorption to 25.8 % of the initially applied P in RYL-cl and to 16.7 % in RYL-sl, in comparison to P without citrate. Citrate sorption in RYL-cl and RYL-sl was highest in the absence of P application, corresponding to 32.0 and 30.2 % of the citrate applied, respectively. With P application, citrate sorption was reduced to 26.4 and 19.7 % of the initially applied citrate in RYL-cl and RYL-sl, respectively. Phosphorus desorption was greater when citrate was used. Phosphorus desorption with citrate and water was higher in the beginning (until 24 h of incubation of P) in RYL-cl and RYL-sl, indicating a rapid initial phase, followed by a slow release phase. This suggests that according to the contact time of P with the soil colloids, the previously adsorbed P can be released to the soil solution in the presence of competing ligands such as citrate. In conclusion, a soil management with continuous input of organic acids is desirable, in view of their potential to compete for P sorption sites, especially in rather weathered soils.
Resumo:
Phytotoxicity and transfer of potentially toxic elements, such as cadmium (Cd) or barium (Ba), depend on the availability of these elements in soils and on the plant species exposed to them. With this study, we aimed to evaluate the effect of Cd and Ba application rates on yields of pea (Pisum sativum L.), sorghum (Sorghum bicolor L.), soybean (Glycine max L.), and maize (Zea mays L.) grown under greenhouse conditions in an Oxisol and an Entisol with contrasting physical and chemical properties, and to correlate the amount taken up by plants with extractants commonly used in routine soil analysis, along with transfer coefficients (Bioconcentration Factor and Transfer Factor) in different parts of the plants. Plants were harvested at flowering stage and measured for yield and Cd or Ba concentrations in leaves, stems, and roots. The amount of Cd accumulated in the plants was satisfactorily evaluated by both DTPA and Mehlich-3 (M-3). Mehlich-3 did not relate to Ba accumulated in plants, suggesting it should not be used to predict Ba availability. The transfer coefficients were specific to soils and plants and are therefore not recommended for direct use in risk assessment models without taking soil properties and group of plants into account.
Resumo:
An oat bioassay was conducted in pots under greenhouse conditions to determine the persistence of atrazine, metribuzin and simazine herbicides in soils of the southeast of Buenos Aires Province, Argentina. Atrazine rates of 0, 0.58, 1.16 and 2.32 mug g-1 of active ingredient (a.i.), metribuzin rates of 0, 0.14, 0.28 and 0.56 mug g-1 of a.i., and simazine rates of 0, 0.72, 1.45 and 2.9 mug g-1 of a.i. dry soil weight were applied to pots containing soils from Balcarce and San Cayetano sites. Organic matter (OM) content and pH of Balcarce soil were 5.5% and 5.8%, while for San Cayetano soil were 2.9% and 6.7%, respectively. Relative dry weight (RDW) of oat shoots was calculated as percentage of control. Considering a 20% RDW reduction of oat shoots, persistences of recommended rates for the region were: atrazine (1.16 mug g-1 of a.i.), 78 and 130 days after treatment (DAT) for Balcarce and San Cayetano soil, respectively; metribuzin (0.28 mug-1 of a.i.), 63 and 77 DAT for Balcarce and San Cayetano soil, respectively; simazine (1.45 mug g-1 of a.i.), 81 and 156 DAT for Balcarce and San Cayetano soil, respectively. Results show that persistence of atrazine, metribuzin and simazine in soil increased with high rates, low OM content and high pH.
Resumo:
The microbiological quality of beef and meat products is strongly influenced by the conditions of hygiene prevailing during their production and handling. Without proper hygienic control, the environment in slaughterhouses and butcher shops can act as an important source of microbiological contamination. To identify the main points of microbiological contamination in the beef processing chain, 443 samples of equipment, installations and products were collected from 11 establishments (1 slaughterhouse and 10 butcher shops) located in the state of Paraná, Brazil. The microbiological quality of all the samples was evaluated using Petri dishes to obtain counts of mesophilic aerobes (AC), total coliforms, Escherichia coli (EC), yeasts and molds (YM). The main contamination points identified in butcher shops, in decreasing order, were stainless steel boxes, beef tenderizers, grinders, knives, mixers, sausage stuffers, plastic boxes, floors and drains. In the slaughterhouse, these points were sausage stuffers, platforms, floors and drains. The most severely contaminated products were fresh sausages and ground beef. This information about the main points of microbiological contamination in the beef processing chain is expected to aid professionals responsible for hygiene in similar establishments to set up proper hygienic procedures to prevent or reduce microbiological contamination of beef and meat products.
Resumo:
Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.
Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration
Resumo:
Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.
Resumo:
OBJECTIVE: To estimate the prevalence of lead poisoning in children and to identify associated factors, as well as possible local sources of contamination. METHODS: A cross-sectional prevalence study conducted in 2006 with a random sample of 97 children age zero to five years from a neighborhood in Porto Alegre, Southern Brazil. Blood lead levels were measured and a questionnaire administered to collect information on sociodemographics, recycling and dwelling. A preliminary environmental evaluation was carried out with direct analysis of soil and indirect analysis of air pollution with bioindicators to identify possible sources of contamination. To analyze lead concentrations from the different collection sites, for each type of material studied, ANOVA was performed with a Brown-Forsythe adjustment for heteroscedasticity and with Dunnett's T3 procedure for multiple comparisons of unequal variances. RESULTS: Blood lead levels > 10.0 µg/dL was found in 16.5% of children. Recycling of waste at home, low father's education level, and increased age of children were associated with increase blood lead levels. High lead levels were found in soil, and there was little indication of lead air pollution. CONCLUSIONS: A high prevalence of lead poisoning was identified, and the potential sources of contamination in this community appear related to waste recylcing activities. Studies should be conducted with other populations of Brazilian children and evaluate potential sources of local and general contamination, to accurately characterize this issue in Brazil.
Resumo:
The most frequent pathway of vertical transmission of HTLV-I is breast-feeding, however bottle fed children may also become infected in a frequency varying from 4 to 14%. In these children the most probable routes of infection are transplacental or contamination in the birth canal. Forty-one bottle-fed children of HTLV-I seropositive mothers in ages varying from three to 39 months (average age of 11 months) were submitted to nested polymerase chain reaction analysis (pol and tax genes). 81.5% of the children were born by an elective cesarean section. No case of infection was detected. The absence of HTLV-I infection in these cases indicates that transmission by transplacental route may be very infrequent.
DISTRIBUTION OF DERMATOPHYTES FROM SOILS OF URBAN AND RURAL AREAS OF CITIES OF PARAIBA STATE, BRAZIL
Resumo:
SUMMARYThe dermatophytes, keratinophilic fungi, represent important microorganisms of the soil microbiota, where there are cosmopolitan species and others with restricted geographic distribution. The aim of this study was to broaden the knowledge about the presence of dermatophytes in soils of urban (empty lots, schools, slums, squares, beaches and homes) and rural areas and about the evolution of their prevalence in soils of varying pH in cities of the four mesoregions of Paraiba State, Brazil. Soil samples were collected from 31 cities of Paraiba State. Of 212 samples, 62% showed fungal growth, particularly those from the Mata Paraibana mesoregion (43.5%), which has a tropical climate, hot and humid. Soil pH varied from 4.65 to 9.06, with 71% of the growth of dermatophytes occurring at alkaline pH (7.02 - 9.06) (ρ = 0.000). Of 131 strains isolated, 57.3% were geophilic species, particularly Trichophyton terrestre(31.3%) and Mycrosporum gypseum(21.4%). M. nanum and T. ajelloi were isolated for the first time in Paraiba State. The zoophilic species identified were T. mentagrophytes var.mentagrophytes (31.3 %) and T. verrucosum (7.6 %), and T. tonsurans was isolated as an anthropophilic species. The soils of urban areas including empty lots, schools, slums and squares of cities in the mesoregions of Paraiba State were found to be the most suitable reservoirs for almost all dermatophytes; their growth may have been influenced by environmental factors, soils with residues of human and/or animal keratin and alkaline pH.
Resumo:
Introduction Cryptosporidium is an important protozoan cause of waterborne disease worldwide of concern to public health authorities. To prevent outbreaks of cryptosporidiosis, the monitoring of this parasite in drinking water is necessary. In the present work, the polymerase chain reaction (PCR) and nested-PCR techniques were used to detect Cryptosporidium in raw water from catchment points of four water treatment plants (WTP) in Curitiba, Paraná, Brazil. Methods First, DNA extraction techniques were tested in samples containing decreasing amount of oocysts in reagent water, and PCR and nested-PCR with specific primers for 18SSU rDNA of Cryptosporidium were conducted to determine their sensitivity. In reagent water, a commercial extraction kit provided the best analytical sensitivity, and PCR and nested-PCR allowed the detection of five and two oocysts, respectively, with the primers XIAOR/XIAOF and XIAO1F/XIAO2R. Results In the spiking experiments, only the PCR with the primers AWA995F/AWA1206R was successful at detecting concentrations of 0.1 oocysts/mL. Two catchments samples of raw water and/or water sludge from four WTPs were contaminated with Cryptosporidium. Conclusions The application of the techniques to monitor Cryptosporidium in water and detect contamination in water catchments of WTPs in Curitiba are discussed in the present work.
Resumo:
Many potentially harmful pesticides for both human health and the environment are used in Brazilian Amazon. However, no scientific datum on pesticide usage is presently available for this region. Consequently, it is difficult to assess which substances arc used and in which quantities. As an important premise for future work on pesticide contamination in the county of Santarém (State of Pará, Brazil), a survey was conducted in order to qualify and quantify the use of some pesticides in this region. This investigation was made between January and March 1997 and August and October 1998 and revealed use of several organophosphates, synthetic pyrethroids and carbamates insecticides. Furthermore, many herbicides and fungicides were listed. These pesticides are used for agriculture, domestic, and sanitary programs. This paper also provides a first estimation of quantities of some insecticides commonly used in agriculture (chlorpyrifos, malathion, metamidophos and methyl-parathion). The annual consumption for these four compounds is estimated at ca. 1 910 kg. Organophosphate insecticide consumption in the county of Santarém seems to be lower than the Brazilian average in terms of «per capita» and «per agricultural area» consumptions. Nevertheless, this county uses toxic substances on sensitive environments such as floodplains (várzeas), making relevant a thorough study on the potential contamination of this environment and its biota.
Resumo:
Fields of murundus (FM) are wetlands that provide numerous ecosystem services. The objectives of this study were to evaluate the chemical [organic carbon (OC), P, K+, Ca2+, Mg2+, Al3+ and H+Al] and physical [texture and bulk density (Bd)] soil attributes and calculate the organic matter (OM) and nutrient stock (P, Ca, Mg, and K) in soils of FM located in the Guapore River basin in Mato Grosso. Thirty-six sampling points were selected, and soil samples were collected from two environments: the murundu and plain area surrounding (PAS). At each sampling point, mini trenches of 0.5 × 0.5 × 0.4 m were opened and disturbed and undisturbed soil samples were collected at depths of 0-0.1, 0.1-0.2, and 0.2-0.4 m. In the Principal Component Analysis the variables H+Al (49%) and OM (4%) were associated with the F1 component and sand content (47%) with the F2 component. The FM had lower pH values and higher concentrations of K+, P, and H+Al than PAS at all depths (p < 0.05). Additionally, FM stocked up to 433, 360, 205, and 11 kg ha-1 of Ca, Mg, K, and P, respectively, for up to a depth of 0.2 m. The murundu stored two times more K and three times more P than that in the PAS. Our results show that the FM has high sand content and Bd greater than 1.5 Mg m-3, high acidity, low OC content, and low nutrient concentrations. Thus, special care must be taken to preserve FM such that human intervention does not trigger environmental imbalances.
Resumo:
The organic and inorganic forms of soil nitrogen and how they participate in the process of fixation, immobilization and mineralization of ammonium in soils were evaluated, after different periods of incubaton, utilizing two soils, a Lithic Haplustoll and a Typic Eutrorthox. The results obtained permit to suggest that : 1) The method for determination of the ammonium fixing capacity based on the extraction with 2N KC1, is considered to be subject to interferences of other soil fractions capable of retaining ammonium. 2) The increase in exchangeable ammonium content is related to the decrease in amino acids and hydrolyzable ammonium. 3) The immobilization and mineralization processes are still held under mil microbial. The forms more affected by this condition are amino acids and hydrolyzable ammonium.