64 resultados para collagen degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nascent procollagen peptides and other secretory proteins are transported across the endoplasmic reticulum (ER) membrane through a protein-conducting channel called translocon. Sec61alpha, a multispanning membrane translocon protein, has been implicated as being essential for translocation of polypeptide chains into the cisterns of the ER. Sec61alpha forms a protein complex with collagen and Hsp47, an ER-resident heat shock protein that binds specifically to collagen. However, it is not known whether Sec61alpha is ubiquitously produced in collagen-producing F9 teratocarcinoma cells or under heat shock treatment. Furthermore, the production and utilization of Sec61alpha may depend on the stage of cell differentiation. Cultured F9 teratocarcinoma cells are capable of differentiation in response to low concentrations of retinoic acid. This differentiation results in loss of tumorigenicity. Mouse F9 cells were grown in culture medium at 37ºC and 43ºC (heat shock treatment) treated or not with retinoic acid, and labeled in certain instances with 35S-methionine. Membrane-bound polysomes of procollagen IV were then isolated. Immunoprecipitation and Western blot analysis were performed using polyclonal antibodies against collagen IV, Hsp47 and Sec61alpha. Under retinoic acid-untreated conditions, F9 cells produced undetectable amounts of Sec61alpha. Sec61alpha, Hsp47 and type IV collagen levels were increased after retinoic acid treatment. Heat shock treatment did not alter Sec61alpha levels, suggesting that Sec61alpha production is probably not affected by heat shock. These data indicate that the enhanced production of Sec61alpha in retinoic acid-induced F9 teratocarcinoma cells parallels the increased synthesis of Hsp47 and collagen type IV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the structural and functional properties of collagen caused by advanced glycation might be of importance for the etiology of late complications in diabetes. The present study was undertaken to investigate the influence of oral administration of aqueous pod extract (200 mg/kg body weight) of Phaseolus vulgaris, an indigenous plant used in Ayurvedic Medicine in India, on collagen content and characteristics in the tail tendon of streptozotocin-diabetic rats. In diabetic rats, collagen content (117.01 ± 6.84 mg/100 mg tissue) as well as its degree of cross-linking was increased, as shown by increased extent of glycation (21.70 ± 0.90 µg glucose/mg collagen), collagen-linked fluorescence (52.8 ± 3.0 AU/µmol hydroxyproline), shrinkage temperature (71.50 ± 2.50ºC) and decreased acid (1.878 ± 0.062 mg hydroxyproline/100 mg tissue) and pepsin solubility (1.77 ± 0.080 mg hydroxyproline/100 mg tissue). The alpha/ß ratio of acid- (1.69) and pepsin-soluble (2.00) collagen was significantly decreased in streptozotocin-diabetic rats. Administration of P. vulgaris for 45 days to streptozotocin-diabetic rats significantly reduced the accumulation and cross-linking of collagen. The effect of P. vulgaris was compared with that of glibenclamide, a reference drug administered to streptozotocin-diabetic rats at the dose of 600 µg/kg body weight for 45 days by gavage. The effects of P. vulgaris (collagen content, 64.18 ± 1.97; extent of glycation, 12.00 ± 0.53; collagen-linked fluorescence, 33.6 ± 1.9; shrinkage temperature, 57.0 ± 1.0; extent of cross-linking - acid-soluble collagen, 2.572 ± 0.080, and pepsin-soluble collagen, 2.28 ± 0.112) were comparable with those of glibenclamide (collagen content, 71.5 ± 2.04; extent of glycation, 13.00 ± 0.60; collagen-linked fluorescence, 38.9 ± 2.0; shrinkage temperature, 59.0 ± 1.5; extent of cross-linking - acid-soluble collagen, 2.463 ± 0.078, and pepsin-soluble collagen, 2.17 ± 0.104). In conclusion, administration of P. vulgaris pods had a positive influence on the content of collagen and its properties in streptozotocin-diabetic rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hepatic fibrosis in patients with non-alcoholic fatty liver disease is associated with progression of the disease. In the present study, we analyzed the discriminative ability of serum laminin, type IV collagen and hyaluronan levels to predict the presence of fibrosis in these patients. In this preliminary report, we studied 30 overweight patients divided into two groups according to the absence (group I, N = 19) or presence (group II, N = 11) of fibrosis in a liver biopsy. Triglycerides, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyltranspeptidade, hyaluronan (noncompetitive fluoroassay), type IV collagen, and laminin (ELISA) were determined. Group II presented significantly higher mean laminin, hyaluronan, type IV collagen, and aspartate aminotransferase values, which were due to the correlation between these parameters and the stage of fibrosis in the biopsy (Spearman's correlation coefficient, rS = 0.65, 0.62, 0.53, and 0.49, respectively). Analysis of the ROC curve showed that laminin values >282 ng/ml were those with the best diagnostic performance, with 87% accuracy. Association of laminin with type IV collagen showed improvement in the positive predictive value (100%), but with reduction in diagnostic sensitivity (64%). When compared with the criteria of Ratziu et al. [Gastroenterology (2000) 118: 1117-1123] for the diagnosis of septal fibrosis, laminin values presented a better diagnostic accuracy (83 vs 70%). Determination of extracellular matrix components in serum, especially of laminin, may identify patients with non-alcoholic fatty liver disease and fibrosis and these components may be used as indicators for liver biopsy in these patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) are a major group of proteases known to regulate extracellular matrix (ECM) turnover and so they have been suggested to be important in the process of lung disease associated with tissue remodeling. This has led to the concept that modulation of airway remodeling including excessive proteolysis damage to the tissue may be of interest for future treatment. Within the MMP family, macrophage elastase (MMP-12) is able to degrade ECM components such as elastin and is involved in tissue remodeling processes in chronic obstructive pulmonary disease including emphysema. Pulmonary fibrosis has an aggressive course and is usually fatal within an average of 3 to 6 years after the onset of symptoms. Pulmonary fibrosis is associated with deposition of ECM components in the lung interstitium. The excessive airway remodeling as a result of an imbalance in the equilibrium of the normal processes of synthesis and degradation of ECM components could justify anti-protease treatments. Indeed, the correlation of the differences in hydroxyproline levels in the lungs of bleomycin-treated mice strongly suggests that a reduced molar pro-MMP-9/TIMP-1 ratio in bronchoalveolar lavage fluid is associated with collagen deposition, beginning as early as the inflammatory events at day 1 after bleomycin administration. Finally, these observations emphasize that effective treatment of these disorders must be started early during the natural history of the disease, prior to the development of extensive lung destruction and fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardiac interstitial fibrosis may contribute to ventricular dysfunction and the prognosis of patients with dilated cardiomyopathy. The objective of the present study was to determine if total myocardial collagen content and collagen type III/I (III/I ratio) mRNAs differ in hypertensive, alcoholic, and idiopathic dilated cardiomyopathy subjects. Echocardiography and exercise cardiopulmonary testing were performed in patients with idiopathic (N = 22), hypertensive (N = 12), and alcoholic (N = 11) dilated cardiomyopathy. Morphometric analysis of collagen was performed in fragments obtained by endomyocardial biopsy with picrosirius red staining. The collagen III/I ratio was determined by reverse transcription polymerase chain reaction. Samples of controls (N = 10) were obtained from autopsy. Echocardiographic variables and maximal oxygen uptake were not different among dilated cardiomyopathy groups. Collagen was higher in all dilated cardiomyopathy groups (idiopathic, hypertensive and alcoholic, 7.36 ± 1.09%) versus controls (1.12 ± 0.18%), P < 0.05. Collagen was lower in idiopathic dilated cardiomyopathy (4.97 ± 0.83%) than hypertensive (8.50 ± 1.11%) and alcoholic (10.77 ± 2.09%) samples (P < 0.005 for both). The collagen III/I ratio in all samples from dilated cardiomyopathy patients was higher compared to that in controls (0.29 ± 0.04, P < 0.05) but was the same in the samples from idiopathic (0.77 ± 0.07), hypertensive (0.75 ± 0.07), and alcoholic (0.81 ± 0.16) dilated cardiomyopathy groups. Because of the different physical properties of the types of collagen, the higher III/I ratio may contribute to progressive ventricular dilation and dysfunction in dilated cardiomyopathy patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutritional substances associated to some hormones enhance liver regeneration when injected intraperitoneally, being denominated hepatotrophic factors (HF). Here we verified if a solution of HF (glucose, vitamins, salts, amino acids, glucagon, insulin, and triiodothyronine) can revert liver cirrhosis and how some extracellular matrices are affected. Cirrhosis was induced for 14 weeks in 45 female Wistar rats (200 mg) by intraperitoneal injections of thioacetamide (200 mg/kg). Twenty-five rats received intraperitoneal HF twice a day for 10 days (40 mL·kg-1·day-1) and 20 rats received physiological saline. Fifteen rats were used as control. The HF applied to cirrhotic rats significantly: a) reduced the relative mRNA expression of the genes: Col-α1 (-53%), TIMP-1 (-31.7%), TGF-β1 (-57.7%), and MMP-2 (-41.6%), whereas Plau mRNA remained unchanged; b) reduced GGT (-43.1%), ALT (-17.6%), and AST (-12.2%) serum levels; c) increased liver weight (11.3%), and reduced liver collagen (-37.1%), regenerative nodules size (-22.1%), and fibrous septum thickness. Progranulin protein (immunohistochemistry) and mRNA (in situ hybridization) were found in fibrous septa and areas of bile duct proliferation in cirrhotic livers. Concluding, HF improved the histology and serum biochemistry of liver cirrhosis, with an important reduction of interstitial collagen and increased extracelullar matrix degradation by reducing profibrotic gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Basic fibroblast growth factor (bFGF) regulates skin wound healing; however, the underlying mechanism remains to be defined. In the present study, we determined the effects of bFGF on the regulation of cell growth as well as collagen and fibronectin expression in fibroblasts from normal human skin and from hypertrophic scars. We then explored the involvement of mitochondria in mediating bFGF-inducedeffects on the fibroblasts. We isolated and cultivated normal and hypertrophic scar fibroblasts from tissue biopsies of patients who underwent plastic surgery for repairing hypertrophic scars. The fibroblasts were then treated with different concentrations of bFGF (ranging from 0.1 to 1000 ng/mL). The growth of hypertrophic scar fibroblasts became slower with selective inhibition of type I collagen production after exposure to bFGF. However, type III collagen expression was affected in both normal and hypertrophic scar fibroblasts. Moreover, fibronectin expression in the normal fibroblasts was up-regulated after bFGF treatment. bFGF (1000 ng/mL) also induced mitochondrial depolarization in hypertrophic scar fibroblasts (P < 0.01). The cellular ATP level decreased in hypertrophic scar fibroblasts (P < 0.05), while it increased in the normal fibroblasts following treatment with bFGF (P < 0.01). These data suggest that bFGF has differential effects and mechanisms on fibroblasts of the normal skin and hypertrophic scars, indicating that bFGF may play a role in the early phase of skin wound healing and post-burn scar formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the reactivity and expression of basal lamina collagen by Schwann cells (SCs) cultivated on a supraorganized bovine-derived collagen substrate. SC cultures were obtained from sciatic nerves of neonatal Sprague-Dawley rats and seeded on 24-well culture plates containing collagen substrate. The homogeneity of the cultures was evaluated with an SC marker antibody (anti-S-100). After 1 week, the cultures were fixed and processed for immunocytochemistry by using antibodies against type IV collagen, S-100 and p75NTR (pan neurotrophin receptor) and for scanning electron microscopy (SEM). Positive labeling with antibodies to the cited molecules was observed, indicating that the collagen substrate stimulates SC alignment and adhesion (collagen IV labeling - organized collagen substrate: 706.33 ± 370.86, non-organized collagen substrate: 744.00 ± 262.09; S-100 labeling - organized collagen: 3809.00 ± 120.28, non-organized collagen: 3026.00 ± 144.63, P < 0.05) and reactivity (p75NTR labeling - organized collagen: 2156.33 ± 561.78, non-organized collagen: 1424.00 ± 405.90, P < 0.05; means ± standard error of the mean in absorbance units). Cell alignment and adhesion to the substrate were confirmed by SEM analysis. The present results indicate that the collagen substrate with an aligned suprastructure, as seen by polarized light microscopy, provides an adequate scaffold for SCs, which in turn may increase the efficiency of the nerve regenerative process after in vivo repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle is the major deposit of protein molecules. As for any cell or tissue, total muscle protein reflects a dynamic turnover between net protein synthesis and degradation. Noninvasive and invasive techniques have been applied to determine amino acid catabolism and muscle protein building at rest, during exercise and during the recovery period after a single experiment or training sessions. Stable isotopic tracers (13C-lysine, 15N-glycine, ²H5-phenylalanine) and arteriovenous differences have been used in studies of skeletal muscle and collagen tissues under resting and exercise conditions. There are different fractional synthesis rates in skeletal muscle and tendon tissues, but there is no major difference between collagen and myofibrillar protein synthesis. Strenuous exercise provokes increased proteolysis and decreased protein synthesis, the opposite occurring during the recovery period. Individuals who exercise respond differently when resistance and endurance types of contractions are compared. Endurance exercise induces a greater oxidative capacity (enzymes) compared to resistance exercise, which induces fiber hypertrophy (myofibrils). Nitrogen balance (difference between protein intake and protein degradation) for athletes is usually balanced when the intake of protein reaches 1.2 g·kg-1·day-1 compared to 0.8 g·kg-1·day-1 in resting individuals. Muscular activities promote a cascade of signals leading to the stimulation of eukaryotic initiation of myofibrillar protein synthesis. As suggested in several publications, a bolus of 15-20 g protein (from skimmed milk or whey proteins) and carbohydrate (± 30 g maltodextrine) drinks is needed immediately after stopping exercise to stimulate muscle protein and tendon collagen turnover within 1 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To understand the pathophysiological mechanisms of pulmonary arterial smooth muscle cell (PASMC) proliferation and extracellular-matrix accumulation in the development of pulmonary hypertension and remodeling, this study determined the effects of different doses of adrenomedullin (ADM) and adrenotensin (ADT) on PASMC proliferation and collagen synthesis. The objective was to investigate whether extracellular signal-regulated kinase (ERK1/2) signaling was involved in ADM- and ADT-stimulated proliferation of PASMCs in 4-week-old male Wistar rats (body weight: 100-150 g, n=10). The proliferation of PASMCs was examined by 5-bromo-2-deoxyuridine incorporation. A cell growth curve was generated by the Cell Counting Kit-8 method. Expression of collagen I, collagen III, and phosphorylated ERK1/2 (p-ERK1/2) was evaluated by immunofluorescence. The effects of different concentrations of ADM and ADT on collagen I, collagen III, and p-ERK1/2 protein expression were determined by immunoblotting. We also investigated the effect of PD98059 inhibition on the expression of p-ERK1/2 protein by immunoblotting. ADM dose-dependently decreased cell proliferation, whereas ADT dose-dependently increased it; and ADM and ADT inhibited each other with respect to their effects on the proliferation of PASMCs. Consistent with these results, the expression of collagen I, collagen III, and p-ERK1/2 in rat PASMCs decreased after exposure to ADM but was upregulated after exposure to ADT. PD98059 significantly inhibited the downregulation by ADM and the upregulation by ADT of p-ERK1/2 expression. We conclude that ADM inhibited, and ADT stimulated, ERK1/2 signaling in rat PASMCs to regulate cell proliferation and collagen expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective was to observe the biodegradable and osteogenic properties of magnesium scaffolding under in vivo conditions. Twelve 6-month-old male New Zealand white rabbits were randomly divided into two groups. The chosen operation site was the femoral condyle on the right side. The experimental group was implanted with porous magnesium scaffolds, while the control group was implanted with hydroxyapatite scaffolds. X-ray and blood tests, which included serum magnesium, alanine aminotransferase (ALT), creatinine (CREA), and blood urea nitrogen (BUN) were performed serially at 1, 2, and 3 weeks, and 1, 2, and 3 months. All rabbits were killed 3 months postoperatively, and the heart, kidney, spleen, and liver were analyzed with hematoxylin and eosin (HE) staining. The bone samples were subjected to microcomputed tomography scanning (micro-CT) and hard tissue biopsy. SPSS 13.0 (USA) was used for data analysis, and values of P<0.05 were considered to be significant. Bubbles appeared in the X-ray of the experimental group after 2 weeks, whereas there was no gas in the control group. There were no statistical differences for the serum magnesium concentrations, ALT, BUN, and CREA between the two groups (P>0.05). All HE-stained slices were normal, which suggested good biocompatibility of the scaffold. Micro-CT showed that magnesium scaffolds degraded mainly from the outside to inside, and new bone was ingrown following the degradation of magnesium scaffolds. The hydroxyapatite scaffold was not degraded and had fewer osteoblasts scattered on its surface. There was a significant difference in the new bone formation and scaffold bioabsorption between the two groups (9.29±1.27 vs 1.40±0.49 and 7.80±0.50 vs 0.00±0.00 mm3, respectively; P<0.05). The magnesium scaffold performed well in degradation and osteogenesis, and is a promising material for orthopedics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.