102 resultados para biomass productivity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To mitigate soil erosion and enhance soil fertility in orange plantations, the permanent protection of the inter-rows by cover species has been suggested. The objective of this study was to evaluate alterations in the microbial biomass, due to different soil tillage systems and intercropped cover species between rows of orange trees. The soil of the experimental area previously used as pasture (Brachiaria humidicola) was an Ultisol (Typic Paleudult) originating from Caiuá sandstone in the northwestern part of the State of Paraná, Brazil. Two soil tillage systems were evaluated: conventional tillage (CT) in the entire area and strip tillage (ST) (strip width 2 m), in combination with different ground cover management systems. The citrus cultivar 'Pera' orange (Citrus sinensis) grafted onto 'Rangpur' lime rootstock was used. Soil samples were collected after five years of treatment from a depth of 0-15 cm, under the tree canopy and in the inter-row, in the following treatments: (1) CT and an annual cover crop with the leguminous species Calopogonium mucunoides; (2) CT and a perennial cover crop with the leguminous peanut Arachis pintoi; (3) CT and an evergreen cover crop with Bahiagrass Paspalum notatum; (4) CT and a cover crop with spontaneous Brachiaria humidicola grass vegetation; and (5) ST and maintenance of the remaining grass (pasture) of Brachiaria humidicola. Soil tillage and the different cover species influenced the microbial biomass, both under the tree canopy and in the inter-row. The cultivation of brachiaria increased C and N in the microbial biomass, while bahiagrass increased P in the microbial biomass. The soil microbial biomass was enriched in N and P by the presence of ground cover species and according to the soil P content. The grass species increased C, N and P in the soil microbial biomass from the inter-row more than leguminous species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inoculation with arbuscular mycorrhizal fungi (AMF) of tree seedlings in the nursery is a biotechnological strategy to improve growth, survival after transplanting, biomass production and to reduce the use of fertilizers. Archontophoenix alexandrae and Euterpe edulis are palm species used in southern Brazil to produce the palm heart, the latter being included in the list of threatened species due to the overexploitation of its native population. The purpose of this paper was to evaluate the effect of mycorrhizal inoculation on growth and physiological parameters of A. alexandrae and E. edulis. After germination, the seedlings were inoculated (AMF) or not (CTL) with AMF in the treatments. Values of chlorophyll content, biomass and shoot phosphorus were not statistically different between the AMF and CTL treatments, after five months in the greenhouse. Inoculation with AMF significantly increased the levels of starch and soluble carbohydrates in shoots and roots of both species. Under field conditions, AMF had no effect on stem diameter and height after 12 and 24 months, but total plant biomass and leaf, stem and root biomass were greater in AMF than in CTL plants. The data indicated that AMF inoculation in the nursery has a strong effect on biomass accumulation after growing for 24 months under field conditions. Therefore, AMF inoculation should be considered an important strategy to increase growth and production of these economically important tropical palm species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial processes have been used as indicators of soil quality, due to the high sensitivity to small changes in management to evaluate, e.g., the impact of applying organic residues to the soil. In an experiment in a completely randomized factorial design 6 x 13 + 4, (pot without soil and residue or absolute control) the effect of following organic wastes was evaluated: pulp mill sludge, petrochemical complex sludge, municipal sewage sludge, dairy factory sewage sludge, waste from pulp industry and control (soil without organic waste) after 2, 4, 6, 12, 14, 20, 28, 36, 44, 60, 74, 86, and 98 days of incubation on some soil microbial properties, with four replications. The soil microbial activity was highly sensitive to the carbon/nitrogen ratio of the organic wastes. The amount of mineralized carbon was proportional to the quantity of soil-applied carbon. The average carbon dioxide emanating from the soil with pulp mill sludge, corresponding to soil basal respiration, was 0.141 mg C-CO2 100 g-1 soil h-1. This value is 6.4 times higher than in the control, resulting in a significant increase in the metabolic quotient from 0.005 in the control to 0.025 mg C-CO2 g-1 Cmic h-1 in the soil with pulp mill sludge. The metabolic quotient in the other treatments did not differ from the control (p < 0.01), demonstrating that these organic wastes cause no disturbance in the microbial community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on microbial activity and biomass in forestry plantations often overlook the role of litter, typically focusing instead on soil nutrient contents to explain plant and microorganism development. However, since the litter is a significant source of recycled nutrients that affect nutrient dynamics in the soil, litter composition may be more strongly correlated with forest growth and development than soil nutrient contents. This study aimed to test this hypothesis by examining correlations between soil C, N, and P; litter C, N, P, lignin content, and polyphenol content; and microbial biomass and activity in pure and mixed second-rotation plantations of Eucalyptus grandis and Acacia mangium before and after senescent leaf drop. The numbers of cultivable fungi and bacteria were also estimated. All properties were correlated with litter C, N, P, lignin and polyphenols, and with soil C and N. We found higher microbial activity (CO2 evolution) in litter than in soil. In the E. grandis monoculture before senescent leaf drop, microbial biomass C was 46 % higher in litter than in soil. After leaf drop, this difference decreased to 16 %. In A. mangium plantations, however, microbial biomass C was lower in litter than in soil both before and after leaf drop. Microbial biomass N of litter was approximately 94 % greater than that of the soil in summer and winter in all plantations. The number of cultivable fungi and bacteria increased after leaf drop, especially so in the litter. Fungi were also more abundant in the E. grandis litter. In general, the A. mangium monoculture was associated with higher levels of litter lignin and N, especially after leaf drop. In contrast, the polyphenol and C levels in E. grandis monoculture litter were higher after leaf drop. These properties were negatively correlated with total soil C and N. Litter in the mixed stands had lower C:N and C:P ratios and higher N, P, and C levels in the microbial biomass. This suggests more effective nutrient cycling in mixed plantations in the long term, greater stimulation of microbial activity in litter and soil, and a more sustainable system in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physical properties and fertility of the soil are important factors in the formation and establishment of pasture. Changes in physical properties affect the movement of water, air, nutrients and roots, which, in turn, affect the productivity and longevity of pastures. The objective of this study was to evaluate the physical properties of the soil and the dry matter yield of a pasture with signalgrass cv. Basilisk (Brachiaria decumbens cv. Basilisk), fertilized with increasing nitrogen doses (N), on a dystrophic Red-Yellow Latosol. The experiment was conducted on the Fazenda Rio Manso of the Universidade Federal dos Vales do Jequitinhonha e Mucuri, in Couto de Magalhães de Minas, State of Minas Gerais, Brazil. To evaluate the annual forage yield, a split plot scheme in a randomized block design with four replications was used, with N doses (0, 50, 100, 150, and 200 kg/ha/year) in the plots and growing seasons (first and second) in the subplots. For soil evaluation, a split plot scheme was used with N doses (0, 25, 50, 75 and 100 kg/ha/cut) in the plots and three sampling times (prior to the experiment, at the end of the first growing season and at the end of the second growing season) in the subplots in a randomized block design with four replications. This analysis was performed separately at two soil depths (0-3 and 10-13 cm). Forage samples were analyzed for the annual dry matter yield (DMY), and soil samples were analyzed for pre-consolidation pressure (σp), initial soil bulk density (Bd), total pore volume (TPV) and void index (Vd). Higher nitrogen doses increased the dry matter yield of signalgrass pasture and the pre-consolidation pressure of the soil. The total pore volume and void index decreased, and the initial soil bulk density increased, though without promoting soil compaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The planting of diversified crops during the sugarcane fallow period can improve the chemical and physical properties and increase the production potential of the soil for the next sugarcane cycle. The primary purpose of this study was to assess the influence of various soil uses during the sugarcane fallow period on soil chemical and physical properties and productivity after the first sugarcane harvest. The experiment was conducted in two areas located in Jaboticabal, São Paulo State, Brazil (21º 14' 05'' S, 48º 17' 09'' W) with two different soil types, namely: an eutroferric Red Latosol (RLe) with high-clay texture (clay content = 680 g kg-1) and an acric Red Latosol (RLa) with clayey texture (clay content = 440 g kg-1). A randomized block design with five replications and four treatments (crop sequences) was used. The crop sequences during the sugarcane fallow period were soybean/millet/soybean, soybean/sunn hemp/soybean, soybean/fallow/soybean, and soybean. Soil use was found not to affect chemical properties and sugarcane productivity of RLe or RLa. The soybean/millet/soybean sequence improved aggregation in the acric Latosol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant quantity of nutrients in vineyards may return to the soil each year through decomposition of residues from cover plants. This study aimed to evaluate biomass decomposition and nutrient release from residues of black oats and hairy vetch deposited in the vines rows, with and without plastic shelter, and in the between-row areas throughout the vegetative and productive cycle of the plants. The study was conducted in a commercial vineyard in Bento Gonçalves, RS, Brazil, from October 2008 to February 2009. Black oat (Avena strigosa) and hairy vetch (Vicia villosa) residues were collected, subjected to chemical (C, N, P, K, Ca, and Mg) and biochemical (cellulose - Cel, hemicellulose - Hem, and lignin - Lig content) analyses, and placed in litter bags, which were deposited in vines rows without plastic shelter (VPRWS), in vines rows with plastic shelter (VPRS), and in the between-row areas (BR). We collected the residues at 0, 33, 58, 76, and 110 days after deposition of the litter bags, prepared the material, and subjected it to analysis of total N, P, K, Ca, and Mg content. The VPRS contained the largest quantities and percentages of dry matter and residual nutrients (except for Ca) in black oat residues from October to February, which coincides with the period from flowering up to grape harvest. This practice led to greater protection of the soil surface, avoiding surface runoff of the solution derived from between the rows, but it retarded nutrient cycling. The rate of biomass decomposition and nutrient release from hairy vetch residues from October to February was not affected by the position of deposition of the residues in the vineyard, which may especially be attributed to the lower values of the C/N and Lig/N ratios. Regardless of the type of residue, black oat or hairy vetch, the greatest decomposition and nutrient release mainly occurred up to 33 days after deposition of the residues on the soil surface, which coincided with the flowering of the grapevines, which is one of the phenological stages of greatest demand for nutrients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soil microbial biomass (SMB) plays an important role in nutrient cycling in agroecosystems, and is limited by several factors, such as soil water availability. This study assessed the effects of soil water availability on microbial biomass and its variation over time in the Latossolo Amarelo concrecionário of a secondary forest in eastern Amazonia. The fumigation-extraction method was used to estimate the soil microbial biomass carbon and nitrogen content (SMBC and SMBN). An adaptation of the fumigation-incubation method was used to determine basal respiration (CO2-SMB). The metabolic quotient (qCO2) and ratio of microbial carbon:organic carbon (CMIC:CORG) were calculated based on those results. Soil moisture was generally significantly lower during the dry season and in the control plots. Irrigation raised soil moisture to levels close to those observed during the rainy season, but had no significant effect on SMB. The variables did not vary on a seasonal basis, except for the microbial C/N ratio that suggested the occurrence of seasonal shifts in the structure of the microbial community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Rubber tree (Hevea brasiliensis) crop may accumulate significant amounts of carbon either in biomass or in the soil. However, a comprehensive understanding of the potential of the C stock among different rubber tree clones is still distant, since clones are typically developed to exhibit other traits, such as better yield and disease tolerance. Thus, the aim of this study was to address differences among different areas planted to rubber clones. We hypothesized that different rubber tree clones, developed to adapt to different environmental and biological constrains, diverge in terms of soil and plant biomass C stocks. Clones were compared in respect to soil C stocks at four soil depths and the total depth (0.00-0.05, 0.05-0.10, 0.10-0.20, 0.20-0.40, and 0.00-0.40 m), and in the different compartments of the tree biomass. Five different plantings of rubber clones (FX3864, FDR 5788, PMB 1, MDX 624, and CDC 312) of seven years of age were compared, which were established in a randomized block design in the experimental field in Rio de Janeiro State. No difference was observed among plantings of rubber tree clones in regard to soil C stocks, even considering the total stock from 0.00-0.40 m depth. However, the rubber tree clones were different from each other in terms of total plant C stocks, and this contrast was predominately due to only one component of the total C stock, tree biomass. For biomass C stock, the MDX 624 rubber tree clone was superior to other clones, and the stem was the biomass component which most accounted for total C biomass. The contrast among rubber clones in terms of C stock is mainly due to the biomass C stock; the aboveground (tree biomass) and the belowground (soil) compartments contributed differently to the total C stock, 36.2 and 63.8 %, respectively. Rubber trees did not differ in relation to C stocks in the soil, but the right choice of a rubber clone is a reliable approach for sequestering C from the air in the biomass of trees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ipomoea asarifolia (Desr.) Roem. & Schultz (Convolvulaceae) and Stachytarpheta cayennensis (Rich) Vahl. (Verbenaceae), two weeds found in pastures and crop areas in Brazilian Amazonia, were grown in controlled environment cabinets under high (800-1000 µmol m-² s-¹) and low (200-350 µmol m-² s-¹) light regimes during a 40-day period. For both species leaf dry mass and leaf area per total plant dry mass, and leaf area per leaf dry mass were higher for low-light plants, whereas root mass per total plant dry mass was higher for high-light plants. High-light S. cayennensis allocated significantly more biomass to reproductive tissue than low-light plants, suggesting a probably lower ability of this species to maintain itself under shaded conditions. Relative growth rate (RGR) in I. asarifolia was initially higher for high-light grown plants and after 20 days started decreasing, becoming similar to low-light plants at the last two harvests (at 30 and 40 days). In S. cayennensis, RGR was also higher for high-light plants; however, this trend was not significant at the first and last harvest dates (10 and 40 days). These results are discussed in relation to their ecological and weed management implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Before planning the large-scale use of nonpathogenic strains of Fusarium oxysporum as biocontrol agents of Fusarium wilt, their behaviour and potential impact on soil ecosystems should be carefully studied as part of risk assessment. The aim of this work was to evaluate the effects of antagonistic F. oxysporum strains, genetically manipulated (T26/6) or not (233/1), on soil microbial biomass and activity. The effects were evaluated, in North-western Italy, in two soils from different sites at Albenga, one natural and the other previously solarized, and in a third soil obtained from a 10-year-old poplar stand (Popolus sp.), near Carignano. There were no detectable effects on ATP, fluorescein diacetate hydrolysis, and biomass P that could be attributed to the introduction of the antagonists. A transient increase of carbon dioxide evolution and biomass C was observed in response to the added inoculum. Although the results showed only some transient alterations, further studies are required to evaluate effects on specific microorganism populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth and biomass allocation responses of the tropical forage grasses Brachiaria brizantha cv. Marandu and B. humidicola were compared for plants grown outdoors, in pots, in full sunlight and those shaded to 30% of full sunlight over a 30day period. The objective was to evaluate the acclimation capacity of these species to low light. Both species were able to quickly develop phenotypic adjustments in response to low light. Specific leaf area and leaf area ratio were higher for low-light plants during the entire experimental period. Low-light plants allocated significantly less biomass to root and more to leaf tissue than high-light plants. However, the biomass allocation pattern to culms was different for the two species under low light: it increased in B. brizantha, but decreased in B. humidicola, probably as a reflection of the growth habits of these species. Relative growth rate and tillering were higher in high-light plants. Leaf elongation rate was significantly increased on both species under low light; however, the difference between treatments was higher in B. brizantha. These results are discussed in relation to the pasture management implications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four field trials were conducted, from 1995 to 1997, with the objective of studying the response of four upland cultivars to foliar fungicide application in relation to panicle blast control, grain yield and sustainability. Differential disease control and yield response of cultivars to fungicide treatment were obtained. Losses in grain yield of cultivars IAC 202, Caiapó, Rio Paranaíba and Araguaia due to panicle blast were 44.8%, 27.4%, 24.4% and 18.2%, respectively. Two applications of tricyclazole or benomyl controlled panicle blast, as indicated by lower values of disease progress curve and relative panicle blast severity, and increased grain yield of the cultivar IAC 202. The losses in 100 panicle grain weight and grain yield were significantly reduced by 22.3% and 25.1% in IAC 202 and 23.6% and 20.5% in Caiapó, respectively, with two sprays of tricyclazole. Sustainable value index for yield was maximum with two applications of tricyclazole (0.59), followed by one application at booting (0.46) and at heading (0.40) in cultivar IAC 202. Results showed no yield response of the cultivars Rio Paranaíba and Araguaia to fungicide applications for panicle blast control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was to study the effects of fire on net N mineralization and soil microbial biomass in burned and unburned cerrado stricto sensu sites. The study was carried out from April 1998 to April 2000. The pH values were significantly higher in the burned site while soil moisture content was significantly higher in the unburned site (P<0.05). The soil C/N ratio was 22/1 and the available NO3-N ranged between 1.5 and 2.8 mg kg-¹ dry weight. However, the NH4-N concentration ranged between 3 and 34 mg kg-1 dry weight in the burned site and between 3 and 22 mg kg-1 dry weight in the unburned site. The NH4-N increased after fire, but no significant changes were observed for NO3-N (P<0.05). The NO3-N accumulation occurred in short periods during the rainy season. The rates of net N mineralization increased during the rainy season while reductions in soil microbial biomass were observed at both sites. This suggested that the peak in microbial activities occurred with the first rain events, with an initial net immobilization followed by net mineralization. Both sites presented the same pattern for mineralization/immobilization, however, the amount of inorganic-N cycled annually in unburned site was 14.7 kg ha-1 per year while the burned site presented only 3.8 kg ha-¹ of inorganic-N, one year after the burning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies on coffee (Coffea arabica L.) cultivation in agroforestry systems in Southern Brazil have shown the potential of partial shading to improve management of this crop. The objective of this work was to evaluate microclimatic conditions and their effects on coffee production of plants shaded with pigeon pea (Cajanus cajan) in comparison to unshaded ones, from May 2001 to August 2002 in Londrina, State of Paraná, Brazil. The appraised microclimatic characteristics were: global radiation, photosynthetic and radiation balance; air, leaf and soil temperatures; and soil humidity. Shading caused significant reduction in incident global solar radiation, photosynthetically active radiation and net radiation, and attenuated maximum leaf, air and soil temperatures, during the day. Shade also reduced the rate of cooling of night air and leaf temperatures, especially during nights with radiative frost. Soil moisture at 0-10 cm depth was higher under shade. The shaded coffee plants produced larger cherries due to slower maturation, resulting in larger bean size. Nevertheless, plants under shade emitted less plagiotropic branches, with smaller number of nodes per branch, and fewer nodes with fruits, resulting in a large reduction in coffee production. These results show the need to find an optimal tree density and management that do not compromise coffee production and protect against extreme temperatures.