88 resultados para baroreceptor reflex
Resumo:
Several investigators have demonstrated that streptozotocin (STZ) diabetes induces changes in the autonomic control of the cardiovascular system. Changes in cardiovascular function may be related to peripheral neuropathy. The aim of the present study was to analyze changes in heart rate (HR) and arterial pressure (AP) as well as baroreflex and chemoreflex sensitivity in STZ-induced diabetic male Wistar rats (STZ, 50 mg/kg, iv, 15 days). Intra-arterial blood pressure signals were obtained for control and diabetic rats (N = 9, each group). Data were processed in a data acquisition system (CODAS, 1 kHz). Baroreflex sensitivity was evaluated by measuring heart rate changes induced by arterial pressure variation produced by phenylephrine and sodium nitroprusside injection. Increasing doses of potassium cyanide (KCN) were used to evaluate bradycardic and pressor responses evoked by chemoreflex activation. STZ induced hyperglycemia (447 ± 49 vs 126 ± 3 mg/dl), and a reduction in AP (99 ± 3 vs 118 ± 2 mmHg), resting HR (296 ± 11 vs 355 ± 16 bpm) and plasma insulin levels (16 ± 1 vs 57 ± 11 µU/ml). We also observed that the reflex bradycardia (-1.68 ± 0.1 vs -1.25 ± 0.1 bpm/mmHg, in the diabetic group) and tachycardia (-3.68 ± 0.5 vs -1.75 ± 0.3 bpm/mmHg, in the diabetic group) produced by vasopressor and depressor agents were impaired in the diabetic group. Bradycardia evoked by chemoreflex activation was attenuated in diabetic rats (control: -17 ± 1, -86 ± 19, -185 ± 18, -208 ± 17 vs diabetic: -7 ± 1, -23 ± 5, -95 ± 13, -140 ± 13 bpm), as also was the pressor response (control: 6 ± 1, 30 ± 7, 54 ± 4, 59 ± 5 vs diabetic: 6 ± 1, 8 ± 2, 33 ± 4, 42 ± 5 mmHg). In conclusion, the cardiovascular responses evoked by baroreflex and chemoreflex activation are impaired in diabetic rats. The alterations of cardiovascular responses may be secondary to the autonomic dysfunction of cardiovascular control
Resumo:
Neurons which release atrial natriuretic peptide (ANPergic neurons) have their cell bodies in the paraventricular nucleus and in a region extending rostrally and ventrally to the anteroventral third ventricular (AV3V) region with axons which project to the median eminence and neural lobe of the pituitary gland. These neurons act to inhibit water and salt intake by blocking the action of angiotensin II. They also act, after their release into hypophyseal portal vessels, to inhibit stress-induced ACTH release, to augment prolactin release, and to inhibit the release of LHRH and growth hormone-releasing hormone. Stimulation of neurons in the AV3V region causes natriuresis and an increase in circulating ANP, whereas lesions in the AV3V region and caudally in the median eminence or neural lobe decrease resting ANP release and the response to blood volume expansion. The ANP neurons play a crucial role in blood volume expansion-induced release of ANP and natriuresis since this response can be blocked by intraventricular (3V) injection of antisera directed against the peptide. Blood volume expansion activates baroreceptor input via the carotid, aortic and renal baroreceptors, which provides stimulation of noradrenergic neurons in the locus coeruleus and possibly also serotonergic neurons in the raphe nuclei. These project to the hypothalamus to activate cholinergic neurons which then stimulate the ANPergic neurons. The ANP neurons stimulate the oxytocinergic neurons in the paraventricular and supraoptic nuclei to release oxytocin from the neural lobe which circulates to the atria to stimulate the release of ANP. ANP causes a rapid reduction in effective circulating blood volume by releasing cyclic GMP which dilates peripheral vessels and also acts within the heart to slow its rate and atrial force of contraction. The released ANP circulates to the kidney where it acts through cyclic GMP to produce natriuresis and a return to normal blood volume
Resumo:
Considerable evidence suggests that nitroxidergic mechanisms in the nucleus tractus solitarii (NTS) participate in cardiovascular reflex control. Much of that evidence, being based on responses to nitric oxide precursors or inhibitors of nitric oxide synthesis, has been indirect and circumstantial. We sought to directly determine cardiovascular responses to nitric oxide donors microinjected into the NTS and to determine if traditional receptor mechanisms might account for responses to certain of these donors in the central nervous system. Anesthetized adult Sprague Dawley rats that were instrumented for recording arterial pressure and heart rate were used in the physiological studies. Microinjection of nitric oxide itself into the NTS did not produce any cardiovascular responses and injection of sodium nitroprusside elicited minimal depressor responses. The S-nitrosothiols, S-nitrosoglutathione (GSNO), S-nitrosoacetylpenicillamine (SNAP), and S-nitroso-D-cysteine (D-SNC) produced no significant cardiovascular responses while injection of S-nitroso-L-cysteine (L-SNC) elicited brisk, dose-dependent depressor and bradycardic responses. In contrast, injection of glyceryl trinitrate elicited minimal pressor responses without associated changes in heart rate. It is unlikely that the responses to L-SNC were dependent on release of nitric oxide in that 1) the responses were not affected by injection of oxyhemoglobin or an inhibitor of nitric oxide synthesis prior to injection of L-SNC and 2) L- and D-SNC released identical amounts of nitric oxide when exposed to brain tissue homogenates. Although GSNO did not independently affect blood pressure, its injection attenuated responses to subsequent injection of L-SNC. Furthermore, radioligand binding studies suggested that in rat brain synaptosomes there is a saturable binding site for GSNO that is displaced from that site by L-SNC. The studies suggest that S-nitrosocysteine, not nitric oxide, may be an interneuronal messenger for cardiovascular neurons in the NTS
Resumo:
The nucleus tractus solitarii (NTS) receives afferent projections from the arterial baroreceptors, carotid chemoreceptors and cardiopulmonary receptors and as a function of this information produces autonomic adjustments in order to maintain arterial blood pressure within a narrow range of variation. The activation of each of these cardiovascular afferents produces a specific autonomic response by the excitation of neuronal projections from the NTS to the ventrolateral areas of the medulla (nucleus ambiguus, caudal and rostral ventrolateral medulla). The neurotransmitters at the NTS level as well as the excitatory amino acid (EAA) receptors involved in the processing of the autonomic responses in the NTS, although extensively studied, remain to be completely elucidated. In the present review we discuss the role of the EAA L-glutamate and its different receptor subtypes in the processing of the cardiovascular reflexes in the NTS. The data presented in this review related to the neurotransmission in the NTS are based on experimental evidence obtained in our laboratory in unanesthetized rats. The two major conclusions of the present review are that a) the excitation of the cardiovagal component by cardiovascular reflex activation (chemo- and Bezold-Jarisch reflexes) or by L-glutamate microinjection into the NTS is mediated by N-methyl-D-aspartate (NMDA) receptors, and b) the sympatho-excitatory component of the chemoreflex and the pressor response to L-glutamate microinjected into the NTS are not affected by an NMDA receptor antagonist, suggesting that the sympatho-excitatory component of these responses is mediated by non-NMDA receptors.
Resumo:
The intake of saccharin solutions for relatively long periods of time causes analgesia in rats, as measured in the hot-plate test, an experimental procedure involving supraspinal components. In order to investigate the effects of sweet substance intake on pain modulation using a different model, male albino Wistar rats weighing 180-200 g received either tap water or sucrose solutions (250 g/l) for 1 day or 14 days as their only source of liquid. Each rat consumed an average of 15.6 g sucrose/day. Their tail withdrawal latencies in the tail-flick test (probably a spinal reflex) were measured immediately before and after this treatment. An analgesia index was calculated from the withdrawal latencies before and after treatment. The indexes (mean ± SEM, N = 12) for the groups receiving tap water for 1 day or 14 days, and sucrose solution for 1 day or 14 days were 0.09 ± 0.04, 0.10 ± 0.05, 0.15 ± 0.08 and 0.49 ± 0.07, respectively. One-way ANOVA indicated a significant difference (F(3,47) = 9.521, P<0.001) and the Tukey multiple comparison test (P<0.05) showed that the analgesia index of the 14-day sucrose-treated animals differed from all other groups. Naloxone-treated rats (N = 7) receiving sucrose exhibited an analgesia index of 0.20 ± 0.10 while rats receiving only sucrose (N = 7) had an index of 0.68 ± 0.11 (t = 0.254, 10 degrees of freedom, P<0.03). This result indicates that the analgesic effect of sucrose depends on the time during which the solution is consumed and extends the analgesic effects of sweet substance intake, such as saccharin, to a model other than the hot-plate test, with similar results. Endogenous opioids may be involved in the central regulation of the sweet substance-produced analgesia.
Resumo:
The effects of postnatal amitraz exposure on physical and behavioral parameters were studied in Wistar rats, whose lactating dams received the pesticide (10 mg/kg) orally on days 1, 4, 7, 10, 13, 16 and 19 of lactation; control dams received distilled water (1 ml/kg) on the same days. A total of 18 different litters (9 of them control and 9 experimental) born after a 21-day gestation were used. The results showed that the median effective time (ET50) for fur development, eye opening, testis descent and onset of the startle response were increased in rats postnatally exposed to amitraz (2.7, 15.1, 21.6 and 15.3 days, respectively) compared to those of the control pups (1.8, 14.0, 19.9 and 12.9 days, respectively). The ages of incisor eruption, total unfolding of the external ears, vaginal and ear opening and the time taken to perform the grasping hindlimb reflex were not affected by amitraz exposure. Pups from dams treated with amitraz during lactation took more time (in seconds) to perform the surface righting reflex on postnatal days (PND) 3 (25.0 ± 2.0), 4 (12.3 ± 1.2) and 5 (8.7 ± 0.9) in relation to controls (10.6 ± 1.2; 4.5 ± 0.6 and 3.4 ± 0.4, respectively); the climbing response was not changed by amitraz. Postnatal amitraz exposure increased spontaneous motor activity of male and female pups in the open-field on PND 16 (140 ± 11) and 17 (124 ± 12), and 16 (104 ± 9), 17 (137 ± 9) and 18 (106 ± 8), respectively. Data on spontaneous motor activity of the control male and female pups were 59 ± 11 and 69 ± 10 for days 16 and 17 and 49 ± 9, 48 ± 7 and 56 ± 7 for days 16, 17 and 18, respectively. Some qualitative differences were also observed in spontaneous motor behavior; thus, raising the head, shoulder and pelvis matured one or two days later in the amitraz-treated offspring. Postnatal amitraz exposure did not change locomotion and rearing frequencies or immobility time in the open-field on PND 30, 60 and 90. The present findings indicate that postnatal exposure to amitraz caused transient developmental and behavioral changes in the exposed offspring and suggest that further investigation of the potential health risk of amitraz exposure to developing human and animal offsprings may be warranted.
Resumo:
The hemodynamic responses to acute (45 min) partial aortic constriction were studied in conscious intact (N = 7) or sinoaortic denervated (SAD) adult male Wistar rats (280-350 g, N = 7) implanted with carotid and femoral arterial catheters, a pneumatic cuff around the abdominal aorta and a pulsed Doppler flow probe to measure changes in aortic resistance. In addition, the hypertensive response and the reflex bradycardia elicited by total (N = 8) vs partial (N = 7) aortic constriction (monitored by maintenance of the pressure distal to the cuff at 50 mmHg) were compared in two other groups of intact rats. Intact rats presented a smaller hypertensive response (26 to 40% above basal level) to partial aortic constriction than SAD rats (38 to 58%). The calculated change in aortic resistance imposed by constriction of the aorta increased progressively only in intact rats, but was significantly smaller (193 to 306%) than that observed (501 to 591%) in SAD rats. Intact rats showed a significant bradycardia (23 to 26% change in basal heart rate) throughout coarctation, whereas the SAD rats did not (1 to 3%). Partial or total occlusion of the aorta induced similar hypertensive responses (37-38% vs 24-30% for total constriction) as well as reflex bradycardia (-15 to -17% vs -22 to -33%) despite a greater gradient in pressure (97-98 vs 129-140 mmHg) caused by total constriction. The present data indicate that the integrity of the baroreflex in intact rats can cause the hypertensive response to level off at a lower value than in SAD rats despite a progressive increase in aortic resistance. In addition, they also indicate that the degree of partial aortic constriction by maintenance of the pressure distal to the cuff at 50 mmHg already elicits a maximal stimulation of the arterial baroreflex
Resumo:
The antinociceptive effects of stimulating the medial (ME) and central (CE) nuclei of the amygdala in rats were evaluated by the changes in the latency for the tail withdrawal reflex to noxious heating of the skin. A 30-s period of sine-wave stimulation of the ME or CE produced a significant and short increase in the duration of tail flick latency. A 15-s period of stimulation was ineffective. Repeated stimulation of these nuclei at 48-h intervals produced progressively smaller effects. The antinociception evoked from the ME was significantly reduced by the previous systemic administration of naloxone, methysergide, atropine, phenoxybenzamine, and propranolol, but not by mecamylamine, all given at the dose of 1.0 mg/kg. Previous systemic administration of naloxone, atropine, and propranolol, but not methysergide, phenoxybenzamine, or mecamylamine, was effective against the effects of stimulating the CE. We conclude that the antinociceptive effects of stimulating the ME involve at least opioid, serotonergic, adrenergic, and muscarinic cholinergic descending mechanisms. The effects of stimulating the CE involve at least opioid, ß-adrenergic, and muscarinic cholinergic descending mechanisms.
Resumo:
This review describes the ways in which the primary bradycardia and peripheral vasoconstriction evoked by selective stimulation of peripheral chemoreceptors can be modified by the secondary effects of a chemoreceptor-induced increase in ventilation. The evidence that strong stimulation of peripheral chemoreceptors can evoke the behavioural and cardiovascular components of the alerting or defence response which is characteristically evoked by novel or noxious stimuli is considered. The functional significance of all these influences in systemic hypoxia is then discussed with emphasis on the fact that these reflex changes can be overcome by the local effects of hypoxia: central neural hypoxia depresses ventilation, hypoxia acting on the heart causes bradycardia and local hypoxia of skeletal muscle and brain induces vasodilatation. Further, it is proposed that these local influences can become interdependent, so generating a positive feedback loop that may explain sudden infant death syndrome (SIDS). It is also argued that a major contributor to these local influences is adenosine. The role of adenosine in determining the distribution of O2 in skeletal muscle microcirculation in hypoxia is discussed, together with its possible cellular mechanisms of action. Finally, evidence is presented that in chronic systemic hypoxia, the reflex vasoconstrictor influences of the sympathetic nervous system are reduced and/or the local dilator influences of hypoxia are enhanced. In vitro and in vivo findings suggest this is partly explained by upregulation of nitric oxide (NO) synthesis by the vascular endothelium which facilitates vasodilatation induced by adenosine and other NO-dependent dilators and attenuates noradrenaline-evoked vasoconstriction.
Resumo:
We investigated the effects of lead exposure during the pre- and postnatal period on the neurobehavioral development of female Wistar rats (70-75 days of age, 120-150 g) using a protocol of lead intoxication that does not affect weight gain. Wistar rats were submitted to lead acetate intoxication by giving their dams 1.0 mM lead acetate. Control dams received deionized water. Growth and neuromotor development were assessed by monitoring daily the following parameters in 20 litters: body weight, ear unfolding, incisor eruption, eye opening, righting, palmar grasp, negative geotaxis, cliff avoidance and startle reflex. Spontaneous alternation was assessed on postnatal day 17 using a T maze. The animals' ability to equilibrate on a beaker rim was measured on postnatal day 19. Lead intoxication was confirmed by measuring renal, hepatic and cerebral lead concentration in dams and litters. Lead treatment hastened the day of appearance of the following parameters: eye opening (control: 13.5 ± 0.6, N = 88; lead: 12.9 ± 0.6, N = 72; P<0.05), startle reflex (control: 13.0 ± 0.8, N = 88; lead: 12.0 ± 0.7, N = 72; P<0.05) and negative geotaxis. On the other hand, spontaneous alternation performance was hindered in lead-exposed animals (control: 37.6 ± 19.7; lead: 57.5 ± 28.3% of alternating animals; P<0.05). These results suggest that lead exposure without concomitant undernutrition alters rat development, affecting specific subsets of motor skills.
Resumo:
The present article contains a brief review on the role of vasopressinergic projections to the nucleus tractus solitarii in the genesis of reflex bradycardia and in the modulation of heart rate control during exercise. The effects of vasopressin on exercise tachycardia are discussed on the basis of both the endogenous peptide content changes and the heart rate response changes observed during running in sedentary and trained rats. Dynamic exercise caused a specific vasopressin content increase in dorsal and ventral brainstem areas. In accordance, rats pretreated with the peptide or the V1 blocker into the nucleus tractus solitarii showed a significant potentiation or a marked blunting of the exercise tachycardia, respectively, without any change in the pressure response to exercise. It is proposed that the long-descending vasopressinergic pathway to the nucleus tractus solitarii serves as one link between the two main neural controllers of circulation, i.e., the central command and feedback control mechanisms driven by the peripheral receptors. Therefore, vasopressinergic input could contribute to the adjustment of heart rate response (and cardiac output) to the circulatory demand during exercise.
Resumo:
Several studies demonstrate that, within the ventral medullary surface (VMS), excitatory amino acids are necessary components of the neural circuits involved in the tonic and reflex control of respiration and circulation. In the present study we investigated the cardiorespiratory effects of unilateral microinjections of the broad spectrum glutamate antagonist kynurenic acid (2 nmol/200 nl) along the VMS of urethane-anesthetized rats. Within the VMS only one region was responsive to this drug. This area includes most of the intermediate respiratory area, partially overlapping the rostral ventrolateral medulla (IA/RVL). When microinjected into the IA/RVL, kynurenic acid produced a respiratory depression, without changes in mean arterial pressure or heart rate. The respiratory depression observed was characterized by a decrease in ventilation, tidal volume and mean inspiratory flow and an increase in respiratory frequency. Therefore, the observed respiratory depression was entirely due to a reduction in the inspiratory drive. Microinjections of vehicle (200 nl of saline) into this area produced no significant changes in breathing pattern, blood pressure or heart rate. Respiratory depression in response to the blockade of glutamatergic receptors inside the rostral VMS suggests that neurons at this site have an endogenous glutamatergic input controlling the respiratory cycle duration and the inspiratory drive transmission.
Resumo:
Technical problems have hampered the study of sleep in teleosts. The electrical discharges of Gymnotus carapo L. (Gymnotidae: Gymnotiformes) were monitored to evaluate their ease and reliability as parameters to study sleep. The discharges were detected by electrodes immersed in a glass aquarium and were recorded on a conventional polygraph. G. carapo showed conspicuous signs of behavioral sleep. During these periods, opercular beat rates were counted, electric discharges recorded, and the "sharp discharge increase" (SDI) of the orienting reflex was investigated. All 20 animals monitored maintained electrical discharges during behavioral sleep. The discharge frequencies during sleep (50.3 ± 10.4 Hz) were not significantly different from those observed when the fish was awake and inactive (57.2 ± 12.1 Hz) (Wilcoxon matched-pairs signed-ranks test, P>0.05). However, the SDI, which was prevalent in the awake fish, was not observed during periods of behavioral sleep. Additional observations showed that the species had cannibalistic habits. When presented with electrical discharges from a conspecific, the sleeping fish showed an initial decrease or pause in discharge frequency, while the awake fish did not have this response. We conclude that the electrical discharges of G. carapo were not conspicuous indicators of behavioral sleep. Discharges may have been maintained during sleep for sensory purposes, i.e., conspecific detection and avoidance of cannibalistic attacks.
Resumo:
Nitric oxide (NO) plays a crucial role in reproduction at every level in the organism. In the brain, it activates the release of luteinizing hormone-releasing hormone (LHRH). The axons of the LHRH neurons project to the mating centers in the brain stem and by afferent pathways evoke the lordosis reflex in female rats. In males, there is activation of NOergic terminals that release NO in the corpora cavernosa penis to induce erection by generation of cyclic guanosine monophosphate (cGMP). NO also activates the release of LHRH which reaches the pituitary and activates the release of gonadotropins by activating neural NO synthase (nNOS) in the pituitary gland. In the gonad, NO plays an important role in inducing ovulation and in causing luteolysis, whereas in the reproductive tract, it relaxes uterine muscle via cGMP and constricts it via prostaglandins (PG).
Resumo:
Although a slightly elevated office blood pressure (BP) has been reported in several studies, little is known about the prolonged resting blood pressure, heart rate (HR) and baroreflex sensitivity (BRS) of prehypertensive subjects with a family history of hypertension. Office blood pressure, prolonged resting (1 h) BP and HR were measured in 25 young normotensives with a positive family history of hypertension (FH+) and 25 young normotensives with a negative family history of hypertension (FH-), matched for age, sex, and body mass index. After BP and HR measurements, blood samples were collected for the determination of norepinephrine, plasma renin activity and aldosterone levels, and baroreflex sensitivity was then tested. Casual BP, prolonged resting BP and heart rate were significantly higher in the FH+ group (119.9 ± 11.7/78.5 ± 8.6 mmHg, 137.3 ± 12.3/74.4 ± 7.9 mmHg, 68.5 ± 8.4 bpm) compared to the FH- group (112.9 ± 11.4/71.2 ± 8.3 mmHg, 128.0 ± 11.8/66.5 ± 7.4 mmHg, 62.1 ± 6.0 bpm). Plasma norepinephrine level was significantly higher in the FH+ group (220.1 ± 104.5 pg/ml) than in the FH- group (169.1 ± 63.3 pg/ml). Baroreflex sensitivity to tachycardia (0.7 ± 0.3 vs 1.0 ± 0.5 bpm/mmHg) was depressed in the FH+ group (P<0.05). The FH+ group exhibited higher casual blood pressure, prolonged resting blood pressure, heart rate and plasma norepinephrine levels than the FH- group (P<0.05), suggesting an increased sympathetic tone in these subjects. The reflex tachycardia was depressed in the FH+ group.