65 resultados para asymmetric electrosynthesis
Resumo:
Aminoalcohols have found important applications in synthetic and medicinal chemistry, being used as chiral building blocks for the synthesis of many biologically active compounds. This class of compounds has been also used as chiral auxiliaries and ligands in asymmetric synthesis. Due to the importance of aminoalcohols in the treatment of several diseases, such as tuberculosis, the aim of this article is the synthesis and preliminary evaluation against tuberculosis of six aminoalcohols in 5 or 6 steps using D-mannitol as starting material, which is a useful carbohydrate employed in many syntheses.
Reações de organocatálise com aminas quirais: aspectos mecanísticos e aplicações em síntese orgânica
Resumo:
The philosophy of organocatalysis is based on the utilization of organic compounds to catalyze organic transformations without the intervention of metals. This area has attracted much attention of the synthetic chemistry community on the last years, which can be confirmed by the explosion of published papers dealing with this subject. Phosphorus compounds, urea and thiourea derivatives, alkaloids, guanidine derivatives, for example, have already been used as organocatalysts. In this review we have focused on the use of chiral amines as organocatalyst. We have also chosen some outstanding examples to demonstrate the potentiality of this strategy in the synthesis of natural products and biologically active compounds.
Resumo:
Non-renewable biomass, such as coal, oil and natural gas are not only energy sources but also important starting materials for the production of a variety of chemicals ranging from gasoline, diesel oil and fine chemicals. In this regard, carbohydrates, the most abundant class of enantiopure organic compounds, are very suitable for generation of chemicals of great practical value. Their bulk-scale availability associated with low cost make them unique starting materials for organic preparative purpose. They are a most attractive alternative for construction of enantiopure target molecules by asymmetric synthesis. This review addresses, in addition to the use of low molecular weight carbohydrates, issues related to renewable biomass from photosynthesis and alternatives for the production of bulk and fine chemicals.
Resumo:
The fact that biologically relevant molecules exist only as one of the two enantiomers is a fascinating example of complete symmetry breaking of chirality and has long intrigued our curiosity. The origin of this selective chirality has remained a fundamental enigma with regard to the origin of life since the time of Pasteur, 160 years ago. The symmetry breaking processes, which include autocatalytic crystallization, asymmetric autocatalysis, spontaneous crystallization, adsorption and polymerization of amino acids on mineral surfaces, provide new insights into the origin of biomolecular homochirality.
Resumo:
The preparation of enantiomerically pure or enriched substances is of fundamental importance to pharmaceutical, food, agrochemical, and cosmetics industries and involves a growing market of hundreds of billions of dollars. However, most chemical processes used for their production are not environmentally friendly because in most cases, stoichiometric amounts of chiral inductors are used and substantial waste is produced. In this context, asymmetric catalysis has emerged as an efficient tool for the synthesis of enantiomerically enriched compounds using chiral catalysts. More specifically, considering the current scenario in the Brazilian chemical industry, especially that of pharmaceuticals, the immediate prospect for the use of synthetic routes developed in Brazil in an enantioselective fashion or even the discovery of new drugs is practically null. Currently, the industrial production of drugs in Brazil is primarily focused on the production of generic drugs and is basically supported by imports of intermediates from China and India. In order to change this panorama and move forward toward the gradual incorporation of genuinely Brazilian synthetic routes, strong incentive policies, especially those related to continuous funding, will be needed. These incentives could be a breakthrough once we establish several research groups working in the area of organic synthesis and on the development and application of chiral organocatalysts and ligands in asymmetric catalysis, thus contributing to boost the development of the Brazilian chemical industry. Considering these circumstances, Brazil can benefit from this opportunity because we have a wide biodiversity and a large pool of natural resources that can be used as starting materials for the production of new chiral catalysts and are creating competence in asymmetric catalysis and related areas. This may decisively contribute to the growth of chemistry in our country.
Resumo:
The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET) and polyvinylpyrrolidone (PVP) is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG) of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP), molecular weight cut-off (MWCO), and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.
Resumo:
Electrosynthesis of dimethyl carbonate (DMC) from methanol and carbon monoxide using an Cu(phen)Cl2 catalyst was achieved at room temperature and atmospheric pressure. The catalytic activity of the ligand 1,10-phenanthroline (phen) and the catalytic system were analyzed. The IR characterization results for the complex catalyst showed that copper ions were coordinated by nitrogen atoms of phen. In addition, the effects of the influencing factors, such as reaction time (t), reaction temperature (T) and the surface area of the working electrode (SWE) were studied.
Resumo:
The pectus excavatum treatment has two different approaches: non-surgical techniques (modified dynamic thoracic compressor, exercises and the vacuum bell) or surgical techniques (silastic or solid silicone implant, open surgical repair like sternochondroplasty and minimally invasive repair). The introduction of Nuss procedure improved the pectus excavatum treatment, but its low acceptance was due to the high complication rate (e.g. cardiac perfuration). The thoracoscopy use for bar mediastinal passage reduced the complication rate. In comparison with sternochondroplasty, the Nuss procedure has smaller incision, less blood loss and less operative time. However, it has more reoperations, complications, longer hospital stay and more readmission rates, more time of thoracic epidural catheter for postoperative analgesia and more need for analgesic after being discharged. Although Nuss procedure has been used in children, patients under ten years must be only observed. The Nuss procedure is applicable to moderate or light symmetrical pectus excavatum, without costal protrusion, in young and adolescents patients. Furthermore, the sternochondroplasty is applicable to severe or asymmetric pectus excavatum, with or without inferior costal protrusion. Therefore, Nuss procedure and sternocondroplasty are not antagonistic procedures, and they must be used in accordance with a treatment organogram and the technique choice must be by functional and aesthetic outcome.
Resumo:
The unsteady, viscous, supersonic flow over a spike-nosed body of revolution is numerically investigated by solving the Navier-Stokes equations. The time-accurate computations are performed employing an implicit algorithm based on the second-order time-accurate LU-SGS scheme with the incorporation of a subiteration procedure to maintain time accuracy. The characteristics of the flow field for a Mach number of 3.0, Reynolds number of 7.87 x 10(6)/m, and angles of attack of 5 and 10 degrees are described. Self-sustained asymmetric shock wave oscillations were observed in the numerical computations for these angles of attack. The main characteristic of the flow field, as well as its influence on drag coefficient is discussed.
Resumo:
We aimed with this study to compare weed infestation in coffee under two different cropping managements: conventional coffee grown alone, or intercropped with banana plantation in a year-round basis (late spring, late summer, late fall and late winter). The experiment was installed in 2009 under field conditions at the Escola Municipal Rural Benedita Figueiró de Oliveira, in the city of Ivinhema in the state of Mato Grosso do Sul, Brazil. Assessments of weed occurrence were made three years after employment, on both cropping systems, and density, frequency, dominance and the importance value for each plant species in each system and season were quantified. Plant diversity within each system was estimated by Simpson and Shannon-Weiner indexes. Similarity between cropping systems were also assessed by the binary asymmetric similarity coefficient of Jaccard. Absolute infestation and spontaneous species differed between the two cropping systems in all seasons. Overall species diversity is higher in the monocrop compared with the intercrop, and it is associated in this study with the higher incidence of troublesome species. Areas were similar in terms of weed composition only in the Fall. Shading provided by the banana trees shows to be an efficient culture management aiming to suppress weeds in agro-ecological planting systems.
Resumo:
Zephyranthes Herb. is a taxonomically complex and cytologically variable group, with about 65 species of Neotropical distribution. Chromosome number variability in 32 individuals of a Zephyranthes sylvatica population from Northeast Brazil was investigated. Three cytotypes were found: 2n = 12 (one metacentric, four submetacentric and one acrocentric pairs), in 24 individuals; 2n = 12 + 1B, in five and three individuals with 2n = 18, a triploid cytotype. All diploid individuals showed chromosomes with polymorphism in pair one and two, while in triploids this polymorphism was observed in all chromosome triplets, generally with two homomorphic chromosomes and a higher or lower heteromorphic chromosome. All individuals had reticulated interfasic nucleus and a slightly asymmetric chromosome complement, with one metacentric chromosome pair and the others more submetacentric to acrocentric. These data confirm the cytological variability previously registered for the genus. Mechanisms involved in karyotypic evolution in this population are discussed.
Resumo:
A photographic map was made of polytene chromosomes of ovarian nurse cells of Anopheles bellator females. The chromosomes of this species have complete or partial homology with those of A. cruzii, mainly in the telomeric and centromeric regions. Variability at the single band level was observed as asymmetric bands at seven different positions. One inversion (3Ra) was detected in the 3R arm.
Resumo:
The submucous plexus of the normal small and large intestine of Calomys callosus was studied by NADH and AChE histochemical techniques and by transmission and scanning electron microscopy. The plexus contains (mean ± SD) 7,488 ± 293 neurons/cm2 in the duodenum, 5,611 ± 836 in the jejunum, 2,741 ± 360 in the ileum, 3,067 ± 179 in the cecum, and 3,817 ± 256 in the proximal colon. No ganglia or nerve cell bodies were seen in the esophagus, stomach, distal colon or rectum. The neurons are pear-shaped with a round or oval nucleus and the neuronal cell profile areas were larger in the large intestine than in the small intestine. Most of the neurons display intense AChE activity in the cytoplasm. AChE-positive nerve fibers are present in a primary meshwork of large nerve bundles and in a secondary meshwork of finer nerve bundles. At the ultrastructural level, the ganglia are irregular in shape and covered with fibroblast-like cells. The nucleoplasm of the neurons is finely granular with a few condensations of chromatin attached to the nuclear envelope. In the neuropil numerous varicosities filled with vesicles of different size and electron densities are seen. The pre- and post-synaptic membrane thickenings are asymmetric. Characteristic glial cells with oval nuclei and few organelles are numerous. These data provide a detailed description of this submucosal meshwork.
Resumo:
The medical records of ten pediatric patients with a clinical diagnosis of tetanus were reviewed retrospectively. The heart rate and blood pressure of all tetanus patients were measured noninvasively every hour during the first two weeks of hospitalization. Six of ten tetanus patients presented clinical evidence of sympathetic hyperactivity (group A) and were compared with a control group consisting of four children who required mechanical ventilation for diseases other than tetanus (group B). Heart rate and blood pressure simultaneously and progressively increased to a maximum by day 7. The increase over baseline was 43.70 ± 11.77 bpm (mean ± SD) for heart rate (P<0.01) and 38.60 ± 26.40 mmHg for blood pressure (P<0.01). These values were higher and significantly different from those of the control group (group B) at day 6, which had an average heart rate increase over baseline of 19.35 ± 12.26 bpm (P<0.05) and blood pressure of 10.24 ± 13.30 mmHg (P<0.05). By the end of the second week of hospitalization, in group A the increase of systolic blood pressure over baseline had diminished to 9.60 ± 15.37 mmHg (P<0.05), but the heart rate continued to be elevated (27.80 ± 33.92 bpm, P = NS), when compared to day 7 maximal values. The dissociation of these two cardiovascular variables at the end of the second week of hospitalization suggests the presence of asymmetric cardiac and vascular sympathetic control. One possible explanation for these observations is a selective and delayed action of tetanus toxin on the inhibitory neurons which control sympathetic outflow to the heart.
Resumo:
The objective of the present study was to determine the levels of amino acids in maternal plasma, placental intervillous space and fetal umbilical vein in order to identify the similarities and differences in amino acid levels in these compartments of 15 term newborns from normal pregnancies and deliveries. All amino acids, except tryptophan, were present in at least 186% higher concentrations in the intervillous space than in maternal venous blood, with the difference being statistically significant. This result contradicted the initial hypothesis of the study that the plasma amino acid levels in the placental intervillous space should be similar to those of maternal plasma. When the maternal venous compartment was compared with the umbilical vein, we observed values 103% higher on the fetal side which is compatible with currently accepted mechanisms of active amino acid transport. Amino acid levels of the placental intervillous space were similar to the values of the umbilical vein except for proline, glycine and aspartic acid, whose levels were significantly higher than fetal umbilical vein levels (average 107% higher). The elevated levels of the intervillous space are compatible with syncytiotrophoblast activity, which maintain high concentrations of free amino acids inside syncytiotrophoblast cells, permitting asymmetric efflux or active transport from the trophoblast cells to the blood in the intervillous space. The plasma amino acid levels in the umbilical vein of term newborns probably may be used as a standard of local normality for clinical studies of amino acid profiles.