158 resultados para aromatic alcohols
Resumo:
Polycyclic aromatic hydrocabons (PAHs) and their nitroderivatives (NPAHs) are ubiquitous in the environment and they are produced in several industrial and combustion processes. Some of these compounds are potent carcinogens/mutagens and their determination in biological samples is an important step for exposure control. A review of the analytical methodologies used for the determination of PAHs and their metabolites in biological samples is presented.
Resumo:
A very short-strong hydrogen bond (<2 Å, >20kcal/mol) is found in the monoanion of certain dicarboxylic acids derived from maleic and dialkylmalonic acids. Certain aromatic diamines that are known as proton sponge have exceptionally high basicity (pKa) and are only monoprotonated with strong acids like percloric acid. The closed proximity between the two basic centers provokes a strong steric interaction that is relieved upon protonation. Similar effects are found in dicarboxylic acids (hydrogen maleate and hydrogen dialkylmalonates) that present a very short distance between the two oxygens and a short-strong hydrogen bond.
Resumo:
Analysis of alcohols, esters and carbonyl compounds were performed using HRGC and HPLC techniques in samples of fusel oils from three different Brazilian alcohol distilleries. High content of isoamyl alcohol (390 g.L-1), isobutyl alcohol (158 g.L-1), ethyl alcohol (28,4 g.L-1), methyl alcohol (16,6 g.L-1) and n-propyl alcohol (11,9 g.L-1) were found. These compounds represent 77 ± 8 % of the approximated weight of a liter of fusel oils. The obtained results show the feasibility of using fusel oils as low-cost raw material for the synthesis of chemicals.
Resumo:
Aromatic nitration is one of the most relevant class of reactions in organic chemistry. It has been intensively studied by both experimental, including works in the condensed as well as in the gas phase, and theoretical procedures. However, the published results do not seem to converge to an unique mechanism. Electrophilic substitution and electron transfer, in an exclusive way, are both proposed as the main mechanism for the reaction. We review these proposals and discuss the most recent findings.
Resumo:
Chalcone (1) and its fluorinated derivatives 2-4, as well as their cyclic analogues 5-10, were synthesized through an aldol condensation reaction between the corresponding ketone and aldehyde. These compounds were characterized by IR, EIMS and ¹H and 13C NMR spectral data. Modern NMR techniques allowed us to conclude that the compounds obtained show E configuration. These techniques were also employed to investigate the equilibrium involving the s-cis and s-trans conformations of 1-4, with this equilibrium being dependent on the fluorine substitution on both aromatic rings, A or B. IR studies indicated that the yield of the s-cis conformation in the fluorinated derivatives is 57.4±1.4; 88.1±0.4 and 66.4±0.7%, for 2, 3 and 4, respectively, based on previous ¹H NMR calculations for chalcone. Theoretical calculations, using the MMX method, were employed to justify the variation of chemical shifts for the fluorinated derivatives and cyclic analogues. These chemical shifts are consequence of the anisotropic effect showed by the carbonyl group on these compounds.
Resumo:
In this paper we describe a powerful methodology for the regiospecific construction of polysubstituted aromatic and heteroaromatic compounds. The DoM reaction (direct ortho-metalation) comprises the deprotonation in position ortho of a aromatic or heteroaromatic containing DMG (directed metalation group) by strong bases, normally an alkyllithium reagent, leading to an ortho-lithiated species. These species, upon treatment with electrophilic reagents, gives 1,2 disubstituted products.
Resumo:
The gas-phase ion-molecule reactions of the Me3SiN(H)SiMe2+ ion, obtained by electron ionization from Me3SiN(H)SiMe3, have been studied in a Fourier transform ion cyclotron resonance spectrometer in order to understand the mechanistic details of an important chemical system presently used in film formation. This silyl cation has been observed to undergo addition reactions at electron rich centers to form stable adducts that may undergo further methane elimination in the case of alcohols and amines. The most important feature of these reactions is the fact that a metathesis type reaction can be observed in the presence of H2O, and other hydrogen labile substrates like alcohols, leading to the formation of the corresponding oxygen-containing ion, i.e. Me3SiOSiMe2+. For alcohols (ROH), facile formation of a tertiary product ion, presumably corresponding to an Me3Si-O-Si(Me)=O+-R structure with elimination of an amine reveals the strong tendency of these nitrogen-containing ions to undergo metathesis type reactions with oxygen containing substrates.
Resumo:
Seeds Citrus oils (C. sinensis, C. limon and C. reticulata) extraction with hexane in a soxhlet apparatus and through supercritical fluid (CO2) were done. Besides triglycerides, the oils obtained with hexane comprised volatile compounds such as terpenes and fatty alcohols, esters, and aldehydes. However, the oils obtained by extraction with supercritical fluid presented only triglycerides. These results indicate that the extraction using supercritical fluid presents better selectivity. The activity of the oils on the development of the ant symbiotic fungus, Leucoagaricus gongylophorus, showed week activity and the topic insecticide assay showed better activity for the tangerine seed oil.
Resumo:
The importance of chiral alcohols as starting materials for the production of fine chemicals and as useful chirons for the building of several interesting molecules or natural products is reported. The useful and common methods of asymmetric reduction such as the chemical (with organoboron or organoaluminum reagents) and the catalytic ones (with ruthenium or rhodium complexes) for preparation of chiral alcohols are described; even the newer and much more rare electrocatalytic methods are reported.
Resumo:
The quantitative chemical analysis of the Brazilian sugar cane spirit distilled from glass column packaged with copper, stainless steel, aluminum sponge, or porcelain balls is described. The main chemical compounds determined by gas chromatography coupled with flame ionization (FID) and flame photometric (FPD) detectors and liquid chromatography coupled with diode array detector are aldehydes, ketones, carboxylic acids, alcohols, esters and dimethylsulfite (DMS). The spirits produced either in columns filled with copper or aluminum pot still exhibits the lowest DMS contents but the higher sulfate and methanol contents, whereas spirits produced in stainless steel or porcelain showed higher DMS concentration and lower teors of sulfate ion and methanol. These observations are coherent with DMS oxidation to sulfate, with methanol as by product, in the presence of either copper or aluminum.
Resumo:
A synthesis of artificial sweetener dulcin starting from nitrobenzene was elaborated for undergraduate organic laboratory course. Paracetamol and phenacetin, both physiologically active analgesic compounds, were also prepared as intermediates. Besides a large scope of discussion subjects related with organic synthesis, interesting lectures about analgesics and sweeteners may also be performed in this project. The advantage of this project is the adaptability according to the conditions offered by the course, i.e., convenience and/or availability of time and reagents.
Resumo:
In this work, the energy transfer by dipole-dipole interaction between cationic dyes in n-alcohols (methanol, ethanol, 1-propanol and 1-butanol) is studied by time resolved and steady state fluorescence measurements. The critical radii of energy transfer were determined by three independent methods; the spectral overlap, fluorescence decay profiles, and relative intensity measurements. In all solvents, R0 values of the dye pairs obtained from spectral overlap were between 40 to 90 Å. Steady state and time resolved fluorescence measurements resulted in values of R0 in the range of 50 - 80 Å, with good correlation of values.
Resumo:
The fractIons of dichloromethane extracts of leaves from andiroba (Carapa guianensis - Meliaceae), caapi (Banisteriopsis caapi - Malpighiaceae), cocoa (Theobroma cacao - Sterculiaceae), Brazil nut (Bertholletia excelsa - Lecytidaceae), cupuaçu (Theobroma grandiflorum - Sterculiaceae), marupá (Simaruba amara - Simaroubaceae) and rubber tree (Hevea brasiliensis - Euphorbiaceae), were analyzed by HT-HRGC and HT-HRGC-MS. Esters of homologous series of fatty acids and long chain alcohols, phytol, amyrines and tocopherols were characterized. The characterization of the compounds was based mainly in mass spectra data and in addition by usual spectrometric data (¹H and 13C NMR, IR).
Resumo:
In this paper we report the synthesis of biologically active compounds through a [3+4] cycloaddition reaction to produce the main frame structure, followed by several conventional transformations. The 1,2alpha,4alpha,5-tetramethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (11) obtained from a [3+4] cycloaddition reaction was converted into 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3-one (13) in 46% yield. This was further converted into the alcohols 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (14), 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3beta-ol (15), 1,2alpha,4alpha,5-tetramethyl-3-butyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (17), 1,2alpha,4alpha,5-tetramethyl-3-hexyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (18) and 1,2alpha,4alpha,5-tetramethyl-3-decyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (19). Dehydration of 17, 18 and 19 with thionyl chloride in pyridine resulted in the alkenes 20, 21 and 22 in ca. 82% - 89% yields from starting alcohols. The herbicidal activity of the compounds synthesized was evaluated at a concentration of 100 µg g-1. The most active compound was 21 causing 42,7% inhibition against Cucumis sativus L.
Resumo:
The oxidation of alcohols to obtain ketones, aldehydes or carboxylic acids is a fundamental transformation in organic synthesis and many reagents are known for these conversions. However, there is still a demand for mild and selective reagents for the oxidation of alcohols in the presence of other functional groups. As an alternative, the nitroxyl radical TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl) has been demonstrated to be a useful reagent for the transformation of alcohols. The oxidation of alcohols using TEMPO is often efficient, fast, selective, made in mild conditions and can tolerate sensitive functional groups. In this article we report different methodologies using TEMPO in the oxidation of alcohols.