88 resultados para World Modeling
Resumo:
Our results have shown the wide diversity of parasites within New World Leishmania. Biochemical and molecular characterization of species within the genus has revealed that much of the population heterogeneity has a genetic basis. The source of genetic diversity among Leishmania appears to arise from predominantly asexual, clonal reproduction, although occasional bouts of sexual reproduction can not be ruled out. Genetic variation is extensive with some clones widely distributed and others seemingly unique and localized to a particular endemic focus. Epidemiological studies of leishmaniasis has been directed to the ecology and dynamics of transmission of Leishmania species/variants, particularly in localized areas. Future research using molecular techniques should aim to identify and follow Leishmania types in nature and correlate genetic typing with important clinical characteristics such as virulence, pathogenicity, drug resistance and antigenic variation. The epidemiological significance of such variation not only has important implications for the control of the leishmaniases, but would also help to elucidate the evolutionary biology of the causative agents.
Resumo:
Numerical analyses (correspondence analysis, ascending hierarchical classification, cladistic approach) were applied to the morphological characters of the adults of the genus Phlebotomus Rondani & Berté 1840. They confirm the reliability of the classic classifications, and also redefine the taxonomic and phylogenetic position of certain taxa. Thus, Spelaeophlebotomus Theodor 1948, Idiophlebotomus Quate & Fairchild 1961 and Australophlebotomus Theodor 1948 deserve generic rank. Among the vectors of leishmaniasis, the subgenus Phlebotomus Rondani & Berté 1840 is probably ancient. The results attribute an intermediate taxonomic and phylogenetic position to the taxa Euphlebotomus Theodor 1948 and Anaphlebotomus Theodor 1948, and reveal the probable artificial nature of the latter. The comparatively large numbers of species of subgenera Paraphlebotomus Theodor 1948, Synphlebotomus Theodor 1948 and, above all, Larroussius Nitzulescu 1931 and Adlerius Nitzulescu 1931, suggest that they are relatively recent. The development of adult morphological characters, the validity of their use in taxonomy and proposals for further studies are discussed.
Resumo:
Numerical analyses (correspondence analysis, ascending hierarchical classification, and cladistics) were done with morphological characters of adult phlebotomine sand flies. The resulting classification largely confirms that of classical taxonomy for supra-specific groups from the Old World, though the positions of some groups are adjusted. The taxa Spelaeophlebotomus Theodor 1948, Idiophlebotomus Quate & Fairchild 1961, Australophlebotomus Theodor 1948 and Chinius Leng 1987 are notably distinct from other Old World groups, particularly from the genus Phlebotomus Rondani & Berté 1840. Spelaeomyia Theodor 1948 and, in particular, Parvidens Theodor & Mesghali 1964 are clearly separate from Sergentomyia França & Parrot 1920.
The Metacyclic Stage-expressed Meta-1 Gene is Conserved between Old and New World Leishmania Species
Resumo:
A mathematical model is proposed to analyze the effects of acquired immunity on the transmission of schistosomiasis in the human host. From this model the prevalence curve dependent on four parameters can be obtained. These parameters were estimated fitting the data by the maximum likelihood method. The model showed a good retrieving capacity of real data from two endemic areas of schistosomiasis: Touros, Brazil (Schistosoma mansoni) and Misungwi, Tanzania (S. haematobium). Also, the average worm burden per person and the dispersion of parasite per person in the community can be obtained from the model. In this paper, the stabilizing effects of the acquired immunity assumption in the model are assessed in terms of the epidemiological variables as follows. Regarded to the prevalence curve, we calculate the confidence interval, and related to the average worm burden and the worm dispersion in the community, the sensitivity analysis (the range of the variation) of both variables with respect to their parameters is performed.
Resumo:
The great expansion in the number of genome sequencing projects has revealed the importance of computational methods to speed up the characterization of unknown genes. These studies have been improved by the use of three dimensional information from the predicted proteins generated by molecular modeling techniques. In this work, we disclose the structure-function relationship of a gene product from Leishmania amazonensis by applying molecular modeling and bioinformatics techniques. The analyzed sequence encodes a 159 aminoacids polypeptide (estimated 18 kDa) and was denoted LaPABP for its high homology with poly-A binding proteins from trypanosomatids. The domain structure, clustering analysis and a three dimensional model of LaPABP, basically obtained by homology modeling on the structure of the human poly-A binding protein, are described. Based on the analysis of the electrostatic potential mapped on the model's surface and conservation of intramolecular contacts responsible for folding stabilization we hypothesize that this protein may have less avidity to RNA than it's L. major counterpart but still account for a significant functional activity in the parasite. The model obtained will help in the design of mutagenesis experiments aimed to elucidate the mechanism of gene expression in trypanosomatids and serve as a starting point for its exploration as a potential source of targets for a rational chemotherapy.
Resumo:
The lengths of the male genital filaments and female spermathecal ducts were measured in phlebotomine sand flies of the Lutzomyia intermedia species complex and the ratios between these characters calculated. Ratios for L. intermedia s. s. from Northeast vs Southeast Brazil (Espírito Santo and Minas Gerais), Espírito Santo/Minas Gerais vs Rio de Janeiro/São Paulo and L. intermedia vs L. neivai were significantly different at P < 0.1, 0.05 and 0.01 respectively when compared using ANOVA. The spermathecal ducts and genital filaments of L. intermedia were significantly longer than those of L. neivai (P < 0.01) and could be used to differentiate these species. The taxonomic and biological significance of these differences is discussed.
Resumo:
Dengue fever is currently the most important arthropod-borne viral disease in Brazil. Mathematical modeling of disease dynamics is a very useful tool for the evaluation of control measures. To be used in decision-making, however, a mathematical model must be carefully parameterized and validated with epidemiological and entomological data. In this work, we developed a simple dengue model to answer three questions: (i) which parameters are worth pursuing in the field in order to develop a dengue transmission model for Brazilian cities; (ii) how vector density spatial heterogeneity influences control efforts; (iii) with a degree of uncertainty, what is the invasion potential of dengue virus type 4 (DEN-4) in Rio de Janeiro city. Our model consists of an expression for the basic reproductive number (R0) that incorporates vector density spatial heterogeneity. To deal with the uncertainty regarding parameter values, we parameterized the model using a priori probability density functions covering a range of plausible values for each parameter. Using the Latin Hypercube Sampling procedure, values for the parameters were generated. We conclude that, even in the presence of vector spatial heterogeneity, the two most important entomological parameters to be estimated in the field are the mortality rate and the extrinsic incubation period. The spatial heterogeneity of the vector population increases the risk of epidemics and makes the control strategies more complex. At last, we conclude that Rio de Janeiro is at risk of a DEN-4 invasion. Finally, we stress the point that epidemiologists, mathematicians, and entomologists need to interact more to find better approaches to the measuring and interpretation of the transmission dynamics of arthropod-borne diseases.
Resumo:
Changes in the epidemiology of diphtheria are occurring worldwide. A large proportion of adults in many industrialized and developing countries are now susceptible to diphtheria. Vaccine-induced immunity wanes over time unless periodic booster is given or exposure to toxigenic Corynebacterium diphtheriae occurs. Immunity gap in adults coupled with large numbers of susceptible children creates the potential for new extensive epidemics. Epidemic emergencies may not be long in coming in countries experiencing rapid industrialization or undergoing sociopolitical instability where many of the factors thought to be important in producing epidemic such as mass population movements and difficult hygienic and economic conditions are present. The continuous circulation of toxigenic C. diphtheriae emphasizes the need to be aware of epidemiological features, clinical signs, and symptoms of diphtheria in vaccine era so that cases can be promptly diagnosed and treated, and further public health measures can be taken to contain this serious disease. This overview focused on worldwide data obtained from diphtheria with particular emphasis to main factors leading to recent epidemics, new clinical forms of C. diphtheriae infections, expression of virulence factors, other than toxin production, control strategies, and laboratory diagnosis procedures.
Resumo:
The ancestors of present-day man (Homo sapiens sapiens) appeared in East Africa some three and a half million years ago (Australopithecs), and then migrated to Europe, Asia, and later to the Americas, thus beginning the differentiation process. The passage from nomadic to sedentary life took place in the Middle East in around 8000 BC. Wars, spontaneous migrations and forced migrations (slave trade) led to enormous mixtures of populations in Europe and Africa and favoured the spread of numerous parasitic diseases with specific strains according to geographic area. The three human plasmodia (Plasmodium falciparum, P. vivax, and P. malariae) were imported from Africa into the Mediterranean region with the first human migrations, but it was the Neolithic revolution (sedentarisation, irrigation, population increase) which brought about actual foci for malaria. The reservoir for Leishmania infantum and L. donovani - the dog - has been domesticated for thousands of years. Wild rodents as reservoirs of L. major have also long been in contact with man and probably were imported from tropical Africa across the Sahara. L. tropica, by contrast, followed the migrations of man, its only reservoir. L. infantum and L. donovani spread with man and his dogs from West Africa. Likewise, for thousands of years, the dog has played an important role in the spread and the endemic character of hydatidosis through sheep (in Europe and North Africa) and dromadary (in the Sahara and North Africa). Schistosoma haematobium and S. mansoni have existed since prehistoric times in populations living in or passing through the Sahara. These populations then transported them to countries of Northern Africa where the specific, intermediary hosts were already present. Madagascar was inhabited by populations of Indonesian origin who imported lymphatic filariosis across the Indian Ocean (possibly of African origin since the Indonesian sailors had spent time on the African coast before reaching Madagascar). Migrants coming from Africa and Arabia brought with them the two African forms of bilharziosis: S. haematobium and S. mansoni.
Resumo:
Paleoparasitology in the Old World has mainly concerned the study of latrine sediments and coprolites collected from mummified bodies or archaeological strata, mostly preserved by natural conditions. Human parasites recovered include cestodes, trematodes, and nematodes. The well preserved conditions of helminth eggs allowed paleoepidemiological approaches taking into account the number of eggs found by archaeological stratum. Tentatively, sanitation conditions were assessed for each archaeological period.
Resumo:
The fossil record and systematics of phlebotomid sand flies, vectors of leishmaniasis and arbovirus in several regions of the world, strongly support that living genera existed long before the Oligocene (38 million years, myr). A common Phlebotominae ancestor was present in the Triassic period before the separations of continents (248 myr).
Resumo:
The pathogenesis of Schistosoma mansoni infection is largely determined by host T-cell mediated immune responses such as the granulomatous response to tissue deposited eggs and subsequent fibrosis. The major egg antigens have a valuable role in desensitizing the CD4+ Th cells that mediate granuloma formation, which may prevent or ameliorate clinical signs of schistosomiasis.S. mansoni major egg antigen Smp40 was expressed and completely purified. It was found that the expressed Smp40 reacts specifically with anti-Smp40 monoclonal antibody in Western blotting. Three-dimensional structure was elucidated based on the similarity of Smp40 with the small heat shock protein coded in the protein database as 1SHS as a template in the molecular modeling. It was figured out that the C-terminal of the Smp40 protein (residues 130 onward) contains two alpha crystallin domains. The fold consists of eight beta strands sandwiched in two sheets forming Greek key. The purified Smp40 was used for in vitro stimulation of peripheral blood mononuclear cells from patients infected with S. mansoni using phytohemagglutinin mitogen as a positive control. The obtained results showed that there is no statistical difference in interferon-g, interleukin (IL)-4 and IL-13 levels obtained with Smp40 stimulation compared with the control group (P > 0.05 for each). On the other hand, there were significant differences after Smp40 stimulation in IL-5 (P = 0.006) and IL-10 levels (P < 0.001) compared with the control group. Gaining the knowledge by reviewing the literature, it was found that the overall pattern of cytokine profile obtained with Smp40 stimulation is reported to be associated with reduced collagen deposition, decreased fibrosis, and granuloma formation inhibition. This may reflect its future prospect as a leading anti-pathology schistosomal vaccine candidate.
Resumo:
Vertebral lesions have been the main evidence for infection by the Mycobacterium tuberculosis complex (MTC) in paleopathology. Skeletal involvement is expected in a small percentage of infected individuals. Recently, several authors report a correlation between rib lesions and tuberculosis (TB) complex infection. This study tests the hypothesis that rib lesions can serve as a useful marker for MTC infection within the Mississippian Schild skeletal collection from West-Central Illinois. Ribs from 221 adults and juveniles were examined, and affected individuals were tested for TB complex infection. DNA from rib samples of affected individuals was amplified with primers targeting the IS6110 insertion element, which is common to all members of the TB complex. Although it cannot allow discrimination between different species of TB, IS6110 is present in many copies within their genomes, and its presence is thus an indication of MTC infection. The results support the use of rib lesions as a marker for TB infection. Additionally, we demonstrate that MTC DNA can be recovered from ribs that lack lesions in individuals who have lesions of other bones. We recommend that an examination of ribs be incorporated into investigations for TB.