128 resultados para Works the Course Conclusion
Resumo:
OBJECTIVE: Left ventricular aneurysm is a complication of myocardial infarction that can best be treated by reconstructive surgeries that can restore ventricular geometry. We analyzed immediate results in a group of consecutive patients who underwent surgical correction of left ventricular aneurysms. METHODS: From January '90 to August '99, 94 patients - mean age 58.4 (ranging from 36 to 73 years), 65 (69.1%) males and 9 ( 30.8%) females - were operated upon. Pre-operative ejection fraction ranged from 0.22 to 0.58 (mean = 0.52), and the aneurysm was located in the antero-lateral area in 90.4% of the cases. Functional class III and IV (NYHA) was present in 82 (87.2%) patients, and 12 (12.7%) were in functional class I and II. Congestive heart failure was the most frequent cause (77.6%), occurring in isolation in 24.4% or associated with coronary artery diseases in 53.2%. RESULTS: Short-term follow-up showed a 7.4% mortality, and low cardiac output was the main cause of death. Coming off pump was uneventful in 73 patients (77.6%), with a 3.2% mortality and with the use of inotropics in 20 (21.3%). One patient (1%) did not come off the pump. CONCLUSION: Surgical correction was adequate in the immediate follow-up of operated patients, and mortality was higher in patients with higher functional class.
Resumo:
OBJECTIVE: To evaluate the characteristics of the patients receiving medical care in the Ambulatory of Hypertension of the Emergency Department, Division of Cardiology, and in the Emergency Unit of the Clinical Hospital of the Ribeirão Preto Medical School. METHODS: Using a protocol, we compared the care of the same hypertensive patients in on different occasions in the 2 different places. The characteristics of 62 patients, 29 men with a mean age of 57 years, were analyzed between January 1996 and December 1997. RESULTS: The care of these patients resulted in different medical treatment regardless of their clinical features and blood pressure levels. Thus, in the Emergency Unit, 97% presented with symptoms, and 64.5% received medication to rapidly reduce blood pressure. In 50% of the cases, nifedipine SL was the elected medication. Patients who applied to the Ambulatory of Hypertension presenting with similar features, or, in some cases, presenting with similar clinically higher levels of blood pressure, were not prescribed medication for a rapid reduction of blood pressure at any of the appointments. CONCLUSION: The therapeutic approach to patients with high blood pressure levels, symptomatic or asymptomatic, was dependent on the place of treatment. In the Emergency Unit, the conduct was, in the majority of cases, to decrease blood pressure immediately, whereas in the Ambulatory of Hypertension, the same levels of blood pressure, in the same individuals, resulted in therapeutic adjustment with nonpharmacological management. These results show the need to reconsider the concept of hypertensive crises and their therapeutical implications.
Resumo:
OBJECTIVE: Doppler tissue imaging (DTI) enables the study of the velocity of contraction and relaxation of myocardial segments. We established standards for the peak velocity of the different myocardial segments of the left ventricle in systole and diastole, and correlated them with the electrocardiogram. METHODS: We studied 35 healthy individuals (27 were male) with ages ranging from 12 to 59 years (32.9 ± 10.6). Systolic and diastolic peak velocities were assessed by Doppler tissue imaging in 12 segments of the left ventricle, establishing their mean values and the temporal correlation with the cardiac cycle. RESULTS: The means (and standard deviation) of the peak velocities in the basal, medial, and apical regions (of the septal, anterior, lateral, and posterior left ventricle walls) were respectively, in cm/s, 7.35(1.64), 5.26(1.88), and 3.33(1.58) in systole and 10.56(2.34), 7.92(2.37), and 3.98(1.64) in diastole. The mean time in which systolic peak velocity was recorded was 131.59ms (±19.12ms), and diastolic was 459.18ms (±18.13ms) based on the peak of the R wave of the electrocardiogram. CONCLUSION: In healthy individuals, maximum left ventricle segment velocities decreased from the bases to the ventricular apex, with certain proportionality between contraction and relaxation (P<0.05). The use of Doppler tissue imaging may be very helpful in detecting early alterations in ventricular contraction and relaxation.
Resumo:
OBJECTIVE: Physical exercise helps to prevent cardiovascular disorders. Campaigns promoting exercise have taken many people to the parks of our city. The most appropriate exercise for preventing cardiovascular disorders is the aerobic modality; inappropriate exercise acutely increases cardiovascular risk, especially in individuals at higher risk. Therefore, assessing the cardiovascular risk of these individuals and their physical activities is of practical value. METHODS: In the Parque Fernando Costa, we carried out the project "Exercício e Coração" (Exercise and Heart) involving 226 individuals. Assessment of the cardiovascular risk and of the physical activity practiced by the individuals exercising at that park was performed with a questionnaire and measurement of the following parameters: blood pressure, weight, height, and waist/hip ratio. The individuals were lectured on the benefits provided by exercise and how to correctly exercise. Each participant received a customized exercise prescription. RESULTS: In regard to risk, 43% of the individuals had health problems and 7% of the healthy individuals had symptoms that could be attributed to heart disorders. High blood pressure was observed in a large amount of the population. In regard to the adequacy of the physical activity, the individuals exercised properly. The project was well accepted, because the participants not only appreciated the initiative, but also reported altering their exercise habits after taking part in the project. CONCLUSION: Data obtained in the current study point to the need to be more careful in assessing the health of individuals who exercise at parks, suggesting that city parks should have a sector designated for assessing and guiding physical activity.
Resumo:
OBJECTIVE: To analyze the relationship between myocardial bridges and the anterior interventricular branch (anterior descending) of the left coronary artery. METHODS: The study was carried out with postmortem material, and methods of dissection and observation were used. We assessed the perimeter of the anterior interventricular branch of the left coronary artery using a pachymeter, calculated its proximal and distal diameters in relation to the myocardial bridge, and also its diameter under the myocardial bridge in 30 hearts. We also observed the position of the myocardial bridge in relation to the origin of the anterior interventricular branch. RESULTS: The diameters of the anterior interventricular branch were as follows: the mean proximal diameter was 2.76±0.76 mm; the mean diameter under the myocardial bridge was 2.08±0.54 mm; and the mean distal diameter was 1.98±0.59 mm. In 33.33% (10/30) of the cases, the diameter of the anterior interventricular branch under the myocardial bridge was lower than the diameter of the anterior interventricular branch distal to the myocardial bridge. In 3.33% (1/30) of the cases, an atherosclerotic plaque was found in the segment under the myocardial bridge. The myocardial bridge was located in the middle third of the anterior interventricular branch in 86.66% (26/30) of the cases. CONCLUSION: Myocardial bridges are more frequently found in the middle third of the anterior interventricular branch of the left coronary artery. The diameter of the anterior interventricular branch of the left coronary artery under the myocardial bridge may be smaller than after the bridge. Myocardial bridges may not provide protection against the formation of atherosclerotic plaque inside the anterior interventricular branch of the left coronary artery.
Resumo:
OBJECTIVE: To determine the influence of stress on teaching medical emergencies in an Advanced Cardiac Life Support (ACLS) course and to verify this influence on learning, and the efficiency of emergency care training. METHODS: Seventeen physicians signed up for an ACLS course. Their pulses were taken and blood pressure (BP) verified on the first day, before the beginning of the course, and on the second day, during the theoretical and practical test (TPT). Variations in pulse rates and BP were compared with students' test grades. Then, students answered a questionnaire of variables (QV) about the amount of sleep they had during the course, the quantity of study material and the time spent studying for the course, and a stress scale graphic. RESULTS: Seven students had a pulse variation less than 10% between the 2 periods and 10 had a 10% or more variation. Grades on TPT were, respectively, 91.4±2.4 and 87.3±5.2 (p<0.05). Six students had a BP variation less than 20 mmHg, and in 11 it varied more than 21 mmHg. Grades on the TPT were 92.3±3.3 and 86.2± 8.1, respectively (p<0.05). The QV dates did not significantly influence grades. CONCLUSION: Stress, as an isolated variable, had a negative influence on the learning process and on the efficiency of emergency training in this situation.
Resumo:
OBJECTIVE: Detect of cardiac alterations in children with AIDS and compare their evolution with the administration of only one anti-retroviral and the recent cases who received drugs in combination. METHODS: We prospectively studied 47 children in 3 groups: group 1, 20 cases treated only with zidovudine; group 2, 10 patients treated initially with zidovudine and later with a combination of drugs and in group 3, 17 patients, who receiced two or three since the beginning. In all patients it was done chest X-ray, EKG and echocardiography every 6 months and after death complete pathological study. RESULTS: Among the 45 patients cases 26 (57%) were index cases. Malnutrition, diarrhea tachycardia, signs of congestive heart failure, pericardial effusion, abnormal ventricular repolarization and arrhythmias were more frequent in group 1. Echocardiographic abnormalities were present in 10 (50%) children of group 1. They were less frequent in the others two groups. In regard to the outcome in group 1, two patients had worsening of sings of cardiomyopaty and 4 died. Cardiac dysfunction in all cases of group 2 and 3 improved with the medication. CONCLUSION:- The children who received combination and their cardiac alterations had more favorable outcome than those who received only one drug.
Resumo:
OBJECTIVE: To identify risk factors for acute myocardial infarction during the postoperative period after myocardial revascularization. METHODS: This was a case-control study paired for sex, age, number, type of graft used, coronary endarterectomy, type of myocardial protection, and use of extracorporeal circulation. We assessed 178 patients (89 patients in each group) undergoing myocardial revascularization, and the following variables were considered: dyslipidemia, systemic hypertension, smoking, diabetes mellitus, previous myocardial revascularization surgery, previous coronary angioplasty, and acute myocardial infarction. RESULTS: Baseline clinical characteristics did not differ in the groups, except for previous myocardial revascularization surgery, prevalent in the case group (34 patients vs. 12 patients; p = 0.0002). This was the only independent predictor of risk for acute myocardial infarction in the postoperative period, based on a multivariate logistic regression analysis (p=0.0001). Mortality and the time of hospital stay of the case group were significantly higher (19.1% vs. 1.1%; p<0.001 and 15.7 days vs. 10.6 days; p<0.05 respectively) than those of the control. CONCLUSION: Only previous myocardial revascularization was an independent predictor of acute myocardial infarction in the postoperative period, based on multivariate logistic regression analysis.
Resumo:
OBJECTIVE: To determine the coronary risk profile in adults and elderly in a community. METHODS: The study comprised a sample of adults (30-59 years, n=547) and the entire elderly population (60-74 years, n=1165) residing in Bambuí town, Brazil. The Framingham score based on sex, age, smoking, diabetes mellitus, systolic and diastolic blood pressure, total cholesterol, and HDL-C was used. The score based on age and sex was defined as "expected" and compared with the mean score obtained by the sum of all risk factors in each age group and sex (score "observed"). RESULTS: The difference between the scores "observed" and "expected" increased with aging in both sexes. Smoking increased the difference from 30 years of age onwards, in both sexes, and hypertension was important in men above the age of 30 years and in women above the age of 50 years. Diabetes and elevated total cholesterol increased the risk of the disease above the age of 50 years in both sexes. A higher level of HDL-C reduced the risk among men above the age of 30 years, with no significant difference among women. Less schooling (< 4 years versus ³ 4 years) was associated with a higher score in adults of both sexes, but not among the elderly. CONCLUSION: Based on these results, in the community studied, the risk of coronary artery disease may be reduced up to 44% in men and 38% in women.
Resumo:
Background: The investigation of stable coronary artery disease (CAD) and its treatment depend on risk stratification for decision-making on the need for cardiac catheterization and revascularization. Objective: To analyze the procedures used in the diagnosis and invasive treatment of patients with CAD, at the Brazilian Unified Health System (SUS) in the cities of Curitiba, São Paulo and at InCor-FMUSP. Methods: Retrospective, descriptive, observational study of the diagnostic and therapeutic itineraries of the Brazilian public health care system patient, between groups submitted or not to prior noninvasive tests to invasive cardiac catheterization. Stress testing, stress echocardiography, perfusion scintigraphy, catheterization and percutaneous or surgical revascularization treatment procedures were quantified and the economic impact of the used strategies. Results: There are significant differences in the assessment of patients with suspected or known CAD in the metropolitan region in the three scenarios. Although functional testing procedures are most often used the direct costs of these procedures differ significantly (6.1% in Curitiba, 20% in São Paulo and 27% in InCor-FMUSP). Costs related to the procedures and invasive treatments represent 59.7% of the direct costs of SUS in São Paulo and 87.2% in Curitiba. In InCor-FMUSP, only 24.3% of patients with stable CAD submitted to CABG underwent a noninvasive test before the procedure. Conclusion: Although noninvasive functional tests are the ones most often requested for the assessment of patients with suspected or known CAD most of the costs are related to invasive procedures/treatments. In most revascularized patients, the documentation of ischemic burden was not performed by SUS.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
After the observation of many thousands of histological sections of the endocervical mucosa it became evident that its columnar cells present a great variety of aspects not only those of the surface of the canal but also those of the glands. A classification of these cells was made taking into account the staining affinity, the intensity staining of the cytoplasm, the presence or absence of cilia, the shape and location of the nucleus. The various combinations of these different data made possible the characterization of 26 types of cells which we labelled by the alphabetical letters. Two hundred and fifty cervices obtained by cervical amputation and by hysterectomy were studied. The uteri presented lesions in the course of routine laboratory examination. In each of the 250 histological sections there were specifically counted 2,000 columnar cells which cover the cervical canal and 2,000columnar cells which form the glands. A graphic representation of the frequency of both the superficial and glandular columnar cells was presented; this was given the name EPITHELIOGRAM. The variation of the cellular "composition" of each epithelium is discussed and the frequency of the various cellular types after the count of one million of cells is presented.
Resumo:
This paper discusses the relations between the genera Toddia and Pirhemocyton, describing certain cytochemical reactions that clarify their nature, and discussing the position of these organisms as being of a parasitic or viral nature. A new species of Pirhemocyton is described form Iguana iguana from Mamo, Marapa (Dto. Federal) of Venezuela; characterized by rectangular globoids with rounded borders. Attempts at experimental infections of other genera of lizerds indicate that the new species, Pirhemocyton iguanae, is specific to the natural host, Iguana iguana. The course of the parasitemia in the lizard is described.
Resumo:
Ultrastructural morphology and ATPase specific activities of mitochondria isolated from 1-celled fertilized egg, 10-day embryo, 21-day infective larvae and adult body wall muscle of Ascaris suum and rat liver were determined and compared. Although cristae of both muscle and egg mitochondria contained numerous elementary particles with head pieces of conventional diameter (85 A), each muscle mitochondrion contained relatively few, short cristae with a diminished frequency of elementary particles and associated ATPase activity. These morphological relationships are related to the previous conclusion that the transition from an aerobic to an essentially anaerobic metabolism is intimately associated with the mitochondrion and is a normal and mandatory feature of development.
Resumo:
Aedes fluviatilis is susceptible to infection by Plasmodium gallinaceum and is a convenient insect host for the malaria parasite in countries where Aedees aegypti cannot be maintained in laboratories. In South America, for instance, the rearing of A. aegypti the main vector of urban yellow fever, is not advaisable because of the potential health hazard it represents. Our results of the comparative studies carried out between the sporogonic cycle produced with two lines of P. gallinaceum parasites into A. fuviatilis were as follows. As proved for A. aegypti, mosquito infection rates were variable when A. fluviatilis blood-fed on chicks infected with and old syringe-passaged strain of P. gallinaceum. Oocysts developed in 41% of those mosquitos and the mean peak of oocyst production was 56 per stomach. Salivary gland infections developed in about 6% of the mosquitos. The course of sporogony was unrelated to the size of the inoculum administered to chicks or to the route by which the birds were infected. The development of infected salivary glands was unrelated to oocyst production. Sporogony of P. gallinaceum was more uniform when mosquitos blood-fed on chicks infected with a sporozoite-passaged strain. Oocysts developed in about 50% of those mosquitoes and the mean peak of oocyst production was 138 per stomach, with some individuals having as many as 600-800 oocysts. Infected salivary glands developed in a mean of 27% of the mosquitos but, in some batches, was a high as 50%. Patterns of salivary gland parasitism were similar to those of oocyst production. The course of sporogony of P. gallinaceum in A. fluviatilis is analized in relation to degree of parasitemia and gametocytemia in the vertebrate host.