47 resultados para Trigonometric models
Resumo:
The broiler rectal temperature (t rectal) is one of the most important physiological responses to classify the animal thermal comfort. Therefore, the aim of this study was to adjust regression models in order to predict the rectal temperature (t rectal) of broiler chickens under different thermal conditions based on age (A) and a meteorological variable (air temperature - t air) or a thermal comfort index (temperature and humidity index -THI or black globe humidity index - BGHI) or a physical quantity enthalpy (H). In addition, through the inversion of these models and the expected t rectal intervals for each age, the comfort limits of t air, THI, BGHI and H for the chicks in the heating phase were determined, aiding in the validation of the equations and the preliminary limits for H. The experimental data used to adjust the mathematical models were collected in two commercial poultry farms, with Cobb chicks, from 1 to 14 days of age. It was possible to predict the t rectal of conditions from the expected t rectal and determine the lower and superior comfort thresholds of broilers satisfactorily by applying the four models adjusted; as well as to invert the models for prediction of the environmental H for the chicks first 14 days of life.
Resumo:
The aim of this study was to compare the hydrographically conditioned digital elevation models (HCDEMs) generated from data of VNIR (Visible Near Infrared) sensor of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), of SRTM (Shuttle Radar Topography Mission) and topographical maps from IBGE in a scale of 1:50,000, processed in the Geographical Information System (GIS), aiming the morphometric characterization of watersheds. It was taken as basis the Sub-basin of São Bartolomeu River, obtaining morphometric characteristics from HCDEMs. Root Mean Square Error (RMSE) and cross validation were the statistics indexes used to evaluate the quality of HCDEMs. The percentage differences in the morphometric parameters obtained from these three different data sets were less than 10%, except for the mean slope (21%). In general, it was observed a good agreement between HCDEMs generated from remote sensing data and IBGE maps. The result of HCDEM ASTER was slightly higher than that from HCDEM SRTM. The HCDEM ASTER was more accurate than the HCDEM SRTM in basins with high altitudes and rugged terrain, by presenting frequency altimetry nearest to HCDEM IBGE, considered standard in this study.