54 resultados para Translation and group homomorphisms
Resumo:
The objective of the present study was to determine the presence of hepatic iron overload in patients with chronic HCV infection and to correlate it with histologic alterations, HCV genotype and response to therapy. Liver tissue samples from 95 patients with chronic hepatitis C were divided into two groups: group I, presence of iron overload in hepatic tissue (Perls' staining) and group II, no iron overload. Hepatic iron overload was detected in 30 (31.6%) of 95 patients. Of the 69 patients tested by genotyping, 49 (71.01%) were genotype 1 and 20 (28.99%) genotype non-1. Iron overload was detected in 14 (28.6%) patients with genotype 1 and in 6 (30%) with genotype non-1 (P = 0.906). There was a significant difference in fibrosis stage between groups (P = 0.005). In group I (N = 30), one patient had stage F0/F1 of fibrosis, while in group II (N = 65), 22 (33.8%) patients had minimal or no fibrosis. Fibrosis stage F2/F3 was observed in 70% of group I patients compared to 46.2% of group II. Eighty-five patients were treated with a combination of interferon and ribavirin; 29 of them (34.1%) had a sustained virologic response and 8 (27.6%) of them had hepatic iron overload. Iron overload was detected in 18 (32.1%) of the 56 non-responders (P = 0.73). Hepatic iron overload was frequent among patients with chronic hepatitis C and was associated with a more severe stage of liver fibrosis. There was no association between iron overload and HCV genotype and response to interferon and ribavirin therapy.
Resumo:
We describe the relative frequency, clinical features, neuroimaging and pathological results, and outcome after pharmacological or surgical intervention for a series of pediatric patients with temporal lobe epilepsy (TLE) from an epilepsy center in Brazil. The medical records of children younger than 12 years with features strongly suggestive of TLE were reviewed from January 1999 to June 1999. Selected children were evaluated regarding clinical, EEG, and magnetic resonance imaging (MRI) investigation and divided into three groups according to MRI: group 1 (G1, N = 9), patients with hippocampal atrophy; group 2 (G2, N = 10), patients with normal MRI, and group 3 (G3, N = 12), patients with other specific temporal lesions. A review of 1732 records of children with epilepsy revealed 31 cases with TLE (relative frequency of 1.79%). However, when the investigation was narrowed to cases with intractable seizures that needed video-EEG monitoring (N = 68) or epilepsy surgery (N = 32), the relative frequency of TLE increased to 19.11 (13/68) and 31.25% (10/32), respectively. At the beginning of the study, 25 of 31 patients had a high seizure frequency (80.6%), which declined to 11 of 31 (35.5%) at the conclusion of the study, as a consequence of pharmacological and/or surgical therapy. This improvement in seizure control was significant in G1 (P < 0.05) and G3 (P < 0.01) mainly due to good postsurgical outcome, and was not significant in G2 (P > 0.1, McNemar's test). These results indicate that the relative frequency of TLE in children was low, but increased considerably among cases with pharmacoresistant seizures. Patients with specific lesions were likely to undergo surgery, with good postoperative outcomes.
Resumo:
Little is known about airway inflammatory markers in chronic obstructive pulmonary disease (COPD). The objective of the present study was to identify and try to correlate pulmonary and peripheral blood inflammatory markers in COPD. In a cross-sectional study on patients with stable COPD, induced sputum and blood samples were collected for the determination of C-reactive protein, eosinophilic cationic protein, serum amyloid A protein, a-1 antitrypsin (a-1AT), and neutrophil elastase. Twenty-two patients were divided into two groups according to post-bronchodilator forced expiratory volume in the first second (%FEV1): group 1 (N = 12, FEV1 <40%) and group 2 (N = 10, FEV1 ³40%). An increase in serum elastase, eosinophilic cationic protein and a-1AT was observed in serum markers in both groups. Cytology revealed the same total number of cells in groups 1 and 2. There was a significantly higher number of neutrophils in group 1 compared to group 2 (P < 0.05). No difference in eosinophils or macrophages was observed between groups. Serum elastase was positively correlated with serum a-1AT (group 1, r = 0.81, P < 0.002 and group 2, r = 0.83, P < 0.17) and negatively correlated with FEV1 (r = -0.85, P < 0.03 and -0.14, P < 0.85, respectively). The results indicate the presence of chronic and persistent pulmonary inflammation in stable patients with COPD. Induced sputum permitted the demonstration of the existence of a subpopulation of cells in which neutrophils predominated. The serum concentration of all inflammatory markers did not correlate with the pulmonary functional impairment.
Resumo:
Iron is an essential metal for all living organisms. However, iron homeostasis needs to be tightly controlled since iron can mediate the production of reactive oxygen species, which can damage cell components and compromise the integrity and/or cause DNA mutations, ultimately leading to cancer. In eukaryotes, iron-regulatory protein 1 (IRP1) plays a central role in the control of intracellular iron homeostasis. This occurs by interaction of IRP1 with iron-responsive element regions at 5' of ferritin mRNA and 3' of transferrin mRNA which, respectively, represses translation and increases mRNA stability. We have expressed IRP1 using the plasmid pT7-His-hIRP1, which codifies for human IRP1 attached to an NH2-terminal 6-His tag. IRP1 was expressed in Escherichia coli using the strategy of co-expressing chaperonins GroES and GroEL, in order to circumvent inclusion body formation and increase the yield of soluble protein. The protein co-expressed with these chaperonins was obtained mostly in the soluble form, which greatly increased the efficiency of protein purification. Metal affinity and FPLC ion exchange chromatography were used in order to obtain highly purified IRP1. Purified protein was biologically active, as assessed by electrophoretic mobility shift assay, and could be converted to the cytoplasmic aconitase form. These results corroborate previous studies, which suggest the use of folding catalysts as a powerful strategy to increase protein solubility when expressing heterologous proteins in E. coli.
Resumo:
The aim of this study was to analyze clinical aspects, hearing evolution and efficacy of clinical treatment of patients with sudden sensorineural hearing loss (SSNHL). This was a prospective clinical study of 136 consecutive patients with SSNHL divided into three groups after diagnostic evaluation: patients with defined etiology (DE, N = 13, 10%), concurrent diseases (CD, N = 63, 46.04%) and idiopathic sudden sensorineural hearing loss (ISSHL, N = 60, 43.9%). Initial treatment consisted of prednisone and pentoxifylline. Clinical aspects and hearing evolution for up to 6 months were evaluated. Group CD comprised 73% of patients with metabolic decompensation in the initial evaluation and was significantly older (53.80 years) than groups DE (41.93 years) and ISSHL (39.13 years). Comparison of the mean initial and final hearing loss of the three groups revealed a significant hearing improvement for group CD (P = 0.001) and group ISSHL (P = 0.001). Group DE did not present a significant difference in thresholds. The clinical classification for SSNHL allows the identification of significant differences regarding age, initial and final hearing impairment and likelihood of response to therapy. Elevated age and presence of coexisting disease were associated with a greater initial hearing impact and poorer hearing recovery after 6 months. Patients with defined etiology presented a much more limited response to therapy. The occurrence of decompensated metabolic and cardiovascular diseases and the possibility of first manifestation of auto-immune disease and cerebello-pontine angle tumors justify an adequate protocol for investigation of SSNHL.
Resumo:
This study determined the effects of gallium-aluminum-arsenide laser (GaAlAs), gallium-arsenide laser (GaAs) and Dersani® healing ointment on skin wounds in Wistar rats. The parameters analyzed were: type I and III collagen fiber concentrations as well as the rate of wound closure. Five wounds, 12 mm in diameter, were made on the animals’ backs. The depth of the surgical incision was controlled by removing the epithelial tissue until the dorsal muscular fascia was exposed. The animals were anesthetized with ketamine and xylazine via intraperitoneal injection. The rats were randomly divided into five groups of 6 animals each, according to the treatment received. Group 1 (L4): GaAs laser (4 J/cm²); group 2 (L30): GaAlAs laser (30 J/cm²); group 3 (L60): GaAlAs laser (60 J/cm²); group 4 (D): Dersani® ointment; group 5 (control): 0.9% saline. The applications were made daily over a period of 20 days. Tissue fragments were stained with picrosirius to distinguish type I collagen from type III collagen. The collagen fibers were photo-documented and analyzed using the Quantum software based on the primary color spectrum (red, yellow and blue). Significant results for wound closing rate were obtained for group 1 (L4), 7.37 mm/day. The highest concentration of type III collagen fibers was observed in group 2 (L30; 37.80 ± 7.10%), which differed from control (29.86 ± 5.15%) on the 20th day of treatment. The type I collagen fibers of group 1 (L4; 2.67 ± 2.23%) and group 2 (L30; 2.87 ± 2.40%) differed significantly from control (1.77 ± 2.97%) on the 20th day of the experiment.
Resumo:
We aimed to evaluate the effects of the barrier agent sodium carboxymethyl cellulose (SCMC) with and without dexamethasone for the prevention of postoperative adhesion formation in a rat model of postoperative peritoneal adhesion. A total of 160 three-month old male and female Wistar rats underwent a laparotomy, and adhesions were induced by ileocecal abrasion. Rats were randomly assigned to 4 groups (n=40 each): group A, untreated; group B, treated with SCMC only; group C1, treated with SCMC + 3 mg dexamethasone, and group C2, treated with SCMC + 8 mg dexamethasone. After 12 days, adhesion formation and histopathological changes were compared. In groups A, B, C1, and C2, the mortality rates were 10, 5, 5, and 5%, respectively. In groups C1 and C2, the adhesions were filmy and easy to dissect and were milder compared with those in groups A and B. The total adhesion score in group C1 (3.38±0.49) was significantly lower than that of group B (6.01±0.57; P<0.01) or group A (8.01±0.67; P<0.05). There was no significant difference in adhesion formation between groups C1 and C2. Compared with groups A and B, groups C1 and C2 exhibited milder histopathological changes. SCMC in combination with dexamethasone can prevent adhesion formation and is a better barrier agent than SCMC alone. The safety and feasibility of SCMC in combination with dexamethasone to prevent adhesion formation after abdominal surgery warrants further clinical study.
Resumo:
As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.
Resumo:
The objective of this study is to evaluate the effect of the daily consumption of ostrich meat (lliofemuralis internus) and bovine meat (Psoas major) on the lipid metabolism in adult mice. The analyses of the centesimal composition of the meats and preparation of the diets were accomplished following the recommendations of the American Institute of Nutrition-AIN-93. Three groups of 150 day-old animals: group I (diet I, with casein), group II (diet II, with ostrich meat), and group III (diet III with bovine meat) were fed for 13 weeks with the respective diets and weight gain, food efficiency coefficient, total cholesterol, lipoprotein fractions, hepatic, transaminases and body fat percentage and hepatic fat content were evaluated. No difference (p < 0.05) it was found for weight gain and coefficients for feed efficiency among the groups. Total cholesterol, HDL-cholesterol, LDL-cholesterol, relationship of total cholesterol/HDL-cholesterol, VLDL, triglycerides and hepatic transaminases were also not different among the groups (p < 0.05). This research suggests that the consumption of ostrich meat or thin bovine meat on a daily basis does not raise concerns about weight gain, and an increase in the plasma concentrations of lipoprotein and levels of hepatic transaminase.