97 resultados para Total electron content (TEC)
Resumo:
Rubus fruticosus (Rosaceae), popularly known as Blackberry, is a highly nutritious fruit, rich in bioactive compounds. Their stability during processing has been the focus of several studies. This work describes the evaluation of the stability of the main phytochemicals of pulp from blackberry cv. Tupy, stored under different temperature conditions for six months. The storage at -10 °C was not sufficient to cause significant changes in total phenolics content, anthocyanins content and antioxidant capacity during two months of storage. Likewise, at -18 °C, total phenolics content and antioxidant capacity were kept for four months, but total anthocyanins and β-carotene content were kept for two and six months of storage, respectively.
Resumo:
Proton exchange membrane fuel cell (PEMFC) requires membrane electrode assemblies (MEA) to generate electrical energy from hydrogen and oxygen. In this study a MEA production process by sieve printing and an ink composition were developed to produce catalyst layers of MEAs. The deposition of the exact catalyst content was possible on cathodes and anodes with only one print step. The optimal ink developed shown viscosity of 2.75 Pa s, density 1.27 g cm-3, total solid content of 33.76 % and tack of 92 U.T. The electrodes prepared in only one printing step showed higher performance than those prepared in several steps.
Resumo:
The phytochemical investigation of Byrsonima gardneriana led to the isolation of five triterpenes and one flavonoid: D:B-Friedoolean-5-en-3-one (1), friedoolean-14-en-3-one (2), friedelan-3-one (3), lup-20(29)-en-3-ol (4), 3β-hydroxiolean-12-ene (5) and 3,3',4',5,7-pentahydroxyflavan (6). Their structures were assigned based on spectroscopic analyses, including two-dimensional NMR techniques and comparison with published spectral data. Antioxidant activities of ethanol extract and phases were measured using the 1,2-diphenyl- 2-picryl-hydrazyl (DPPH) free radical scavenging assay, evaluation of total phenolic content and trolox equivalent antioxidant capacity (TEAC).
Resumo:
Phytochemical investigation of Eugenia copacabanensis allowed for the isolation and identification of following compounds: β-sitosterol, β-sitosterol-glucoside, eight triterpenes, (mixture of α- and β-amyrins, ursolic acid, 30-hydroxy-ursolic acid, betulin, friedelin, friedelan-3,4-lactone, and taraxerol), a mixture of three sesquiterpenes, (clovandiol, globulol, and viridiflorol), three flavonoids (kaempferol-3-O-β-D-rhamnoside, quercetin-3-O-α-L-arabinoside, and quercetin), and a mixture of four coumaroyl esters (octacosanyl, heptacosanyl, hexacosanyl, and tetracosanyl coumarates). The structures of these compounds were assigned based on comparison with literature data and spectroscopic analysis, including analysis by two-dimensional NMR techniques. Total phenolic content and total flavonoids were evaluated. Antioxidant activities of methanol extracts and fractions were measured by the 1,2-diphenyl-2-picryl-hidrazyl free radical scavenging assay.
Resumo:
Chromatographic analysis of flavonoids in ethyl acetate fractions of the stamen, gynoecium, and petal of Magnolia grandiflora L. by HPLC-PDA-MS/MS-ESI in the negative ionization mode was performed in this study. The results revealed the presence of eight flavonoids: apigenin 8-C-glucoside, luteolin 8-C-glucoside, quercetin 3-O-rutinoside, quercetin 3-O-galactoside, quercetin, 3-O-glucoside, kaempferol 3-O-rutinoside, isorhamnetin 3-O-glucoside, and isorhamnetin. Their quantification revealed that luteolin 8-C-glucoside is the major flavonoid and that the total phenolic content is concentrated primarily in the stamen. The antioxidant and hepatoprotective effects of ethanolic extract of the flower organs were evaluated against hepatotoxicity induced by CCl4, compared with the effects of silymarin.
Resumo:
Quetiapine is an atypical antipsychotic used to treat schizophrenia. However, despite great interest for its chronic therapeutic use, quetiapine has some important side effects such as weight gain induction. The development of a quetiapine nanocarrier can potentially target the drug into central nervous system, resulting in a reduction of systemic side effects and improved patient treatment. In the present work, a simple liquid chromatography/ultraviolet detection (LC/UV) analytical method was developed and validated for quantification of total quetiapine content in lipid core nanocapsules as well as for determination of incorporation efficiency. An algorithm proposed by Oliveira et al. (2012) was applied to characterize the distribution of quetiapine in the pseudo-phases of the nanocarrier, leading to a better understanding of the quetiapine nanoparticles produced. The analytical methodology developed was specific, linear in the range of 0.5 to 100 µg mL−1 (r2 > 0,99), and accurate and precise (R.S.D < ±5%). The absolute recovery of quetiapine from the nanoparticles was approximately 98% with an incorporation efficiency of approximately 96%. The results indicated that quetiapine was present in a type III distribution according to the algorithm, and was mainly located in the core of the nanoparticle because of its logD in the formulation pH (6.86 ± 0.4).
Resumo:
Starch is the most important carbohydrate storage in plants. It is a raw material with diverse botanical origins, and is used by the food, paper, chemical, pharmaceutical, textile and other industries. In this work, native starches of Paraná pine seeds (pinhão) (Araucária angustiofolia, Bert O. Ktze) and european chestnut seeds (Castanea sativa, Mill) were studied by thermoanalytical techniques: thermo-gravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), as well as X-ray powder patterns diffractometry. Apparent and total amylose content was also determined.
Resumo:
Three simple and sensitive spectrophotometric methods are described for the determination of ofloxacin (OFX) in pharmaceuticals and in spiked human urine. First and second methods are based on the measurement of absorbance of OFX in 0.1 M HCl at 293 nm (method A) and 0.1 M NaOH at 287 nm, respectively. The third method is based on the measurement of 2:1 complex formed between OFX and iron(III) in H2SO4 medium, the complex peaking at 420 nm (method C). The optimum conditions for all the three methods are optimized. Beer's law is obeyed over the ranges 0.63-12.5 using method A and method B, and 10-120 µg mL-1 using method C. The apparent molar absorptivity values are calculated to be 3.5 × 10(4), 2.76 × 10(4) and 2.51 × 10³ L mol-1cm-1 for method A, method B and method C, respectively. The Sandell sensitivity, limit of detection (LOD) and limit quantification (LOQ) values are also reported. All the methods were validated in accordance with current ICH guidelines. The developed methods were employed with high degree of precision and accuracy for the estimation of total drug content in commercial tablet formulations of DOX. The results obtained from human spiked urine are satisfactory and recovery values are in the range 95.5-106.6%.
Resumo:
Charcoal production stands out as a raw material for the production of renewable energy. To assess wood quality in energy terms, studies have focused more on the holocellulose and lignin content than on the role of extractives. The objective of this study was to evaluate the relationship between the extractive content in cold water, in dichloromethane and total on energy properties of wood and charcoal, from six trees species. The extractives were removed with different solvents to be recorded and gross calorific value of wood was determined. The wood was carbonized at 1.67°C/min heating rate until maximum of 450°C and residence time of 30 min. The extractive content was correlated with the gravimetric yield, apparent relative density, ash, volatile matter, fixed carbon and gross calorific value of charcoal. The removal of total extractives and extractives soluble in dichloromethane reduced the gross calorific value of wood of most species evaluated. The extractives removed in cold water did not correlate with the parameters of carbonization. The extractives content in dichloromethane correlated with volatile matter, fixed carbon and gross calorific value. Total extractive content correlated with gravimetric yield, apparent relative density and gross calorific value of charcoal.
Resumo:
Attempting to associate waste treatment to the production of clean and renewable energy, this research sought to evaluate the biological production of hydrogen using wastewater from the cassava starch treatment industry, generated during the processes of extraction and purification of starch. This experiment was carried out in a continuous anaerobic reactor with a working volume of 3L, with bamboo stems as the support medium. The system was operated at a temperature of 36°C, an initial pH of 6.0 and under variations of organic load. The highest rate of hydrogen production, of 1.1 L.d-1.L-1, was obtained with application of an organic loading rate of 35 g.L-1.d-1, in terms of total sugar content and hydraulic retention time of 3h, with a prevalence of butyric and acetic acids as final products of the fermentation process. Low C/N ratios contributed to the excessive growth of the biomass, causing a reduction of up to 35% in hydrogen production, low percentages of H2 and high concentrations of CO2in the biogas.
Resumo:
Asteraceae weeds are rich in chemicals that have biological and pharmaceutical activities. The aims of this work were to describe the phytochemistry and quantify the polyphenols in ethanol extracts from leaves of 12 species of Asteraceae weeds collected in Diamantina, Minas Gerais State, Brazil. The screening of Asteraceae extracts revealed the presence of tannins, steroids, triterpenes, anthocyanins, and flavonoids. The total phenolic content was high in extracts of Lychnophora ericoides (147.97 ± 2.66), Lepidaploa lilacina (141.11 ± 1.99), and Eremanthus elaeagnus (134.61 ± 7.81) and low in extracts of Lychnophora ramosissima (32.65 ± 0.70), and Lychnophora sp. (54.03 ± 0.73). Extracts of Asteraceae weeds from Diamantina could have potential for biological studies that are searching for new pesticides and drugs.
Resumo:
Knowledge of the minimum rate of glyphosate required to eradicate sugarcane ratoons can reduce the amount of herbicide used. To confirm this hypothesis, this study aimed to investigate the tolerance of different sugarcane cultivars to chemical eradication, at different glyphosate rates. The experiment was conducted in a randomized block design in a split-plot scheme, with four replications. The sugarcane cultivars (IACSP94-2094, IACSP94-2101, IACSP93-3046, IACSP94‑4004, IAC86-2480, and RB72454) were allocated in plots and the glyphosate rates (0, 1,440, 2,160, 2,880, 3,600, and 4,320 g ha-1), in the sub plots. The traits evaluated were signs of poisoning symptoms; total chlorophyll content, plant height, percentage of dead tillers, and dry weight of the plants. At 45 days after application (DAA), the glyphosate rate of 1,440 g a.e. ha-1 eradicated the cultivars IACSP94-2094 and IACSP94-2101, as well as RB72454 with application of 2,160 g a.e. ha‑1. Application of glyphosate 2,880 g a.e. ha-1 eradicated both IACSP93-3046 and IAC86-2480 and glyphosate 3,600 g a.e. ha-1 eradicated IACSP94-4004. The most tolerant cultivar was IACSP94‑4004, eradicated at the rate of 3,600 g. a.e. ha-1. This confirms the hypothesis that knowing the cultivar's tolerance leads, in practice, to a smaller amount of herbicide applied to the environment, which also reduces production costs.
Resumo:
Cancer cachexia causes disruption of lipid metabolism. Since it has been well established that the various adipose tissue depots demonstrate different responses to stimuli, we assessed the effect of cachexia on some biochemical and morphological parameters of adipocytes obtained from the mesenteric (MES), retroperitoneal (RPAT), and epididymal (EAT) adipose tissues of rats bearing Walker 256 carcinosarcoma, compared with controls. Relative weight and total fat content of tissues did not differ between tumor-bearing rats and controls, but fatty acid composition was modified by cachexia. Adipocyte dimensions were increased in MES and RPAT from tumor-bearing rats, but not in EAT, in relation to control. Ultrastructural alterations were observed in the adipocytes of tumor-bearing rat RPAT (membrane projections) and EAT (nuclear bodies).
Resumo:
Renin is an enzyme involved in the stepwise generation of angiotensin II. Juxtaglomerular cells are the main source of plasma renin, but renin activity has been detected in other cell types. In the present study we evaluated the presence of renin mRNA in adult male Wistar rat and mouse (C-57 Black/6) mesangial cells (MC) and their ability to process, store and release both the active and inactive forms of the enzyme. Active renin and total renin content obtained after trypsin treatment were estimated by angiotensinogen consumption analyzed by SDS-PAGE electrophoresis and quantified by angiotensin I generation by HPLC. Renin mRNA, detected by RT-PCR, was present in both rat and mouse MC under basal conditions. Active renin was significantly higher (P<0.05) in the cell lysate (43.5 ± 5.7 ng h-1 10(6) cells) than in the culture medium (12.5 ± 2.5 ng h-1 10(6) cells). Inactive prorenin content was similar for the intra- and extracellular compartments (9.7 ± 3.1 and 3.9 ± 0.9 ng h-1 10(6) cells). Free active renin was the predominant form found in both cell compartments. These results indicate that MC in culture are able to synthesize and translate renin mRNA probably as inactive prorenin which is mostly processed to active renin inside the cell. MC secrete both forms of the enzyme but at a lower level compared with intracellular content, suggesting that the main role of renin synthesized by MC may be the intracellular generation of angiotensin II.
Resumo:
The effects of schistosomiasis on microsomal enzymes were studied on post-infection day 90 when accumulated damage and fibrosis are most intense but granulomatous reaction around the eggs harbored in the liver is smaller than during the earlier phases. Swiss Webster (SW) and DBA/2 mice of either sex (N = 12 per sex per group) were infected with 100 Schistosoma mansoni cercariae on postnatal day 10 and killed on post-infection day 90. Cytochrome P-450 (CYP) concentration and alkoxyresorufin-O-dealkylases (EROD, MROD, BROD, and PROD), p-nitrophenol-hydroxylase (PNPH), coumarin-7-hydroxylase (COH), and UDP-glucuronosyltransferase (UGT) activities were measured in hepatic microsomes. Age-matched mice of the same sex and strain were used as controls. In S. mansoni-infected mice, CYP1A- and 2B-mediated activities (control = 100%) were reduced in SW (EROD: male (M) 36%, female (F) 38%; MROD: M 38%, F 39%; BROD: M 46%, F 19%; PROD: M 50%, F 28%) and DBA/2 mice (EROD: M 64%, F 58%; MROD: M 60%; BROD: F 49%; PROD: M 73%) while PNPH (CYP2E1) was decreased in SW (M 31%, F 38%) but not in DBA/2 mice. COH did not differ between infected and control DBA/2 and UGT, a phase-2 enzyme, was not altered by infection. In conclusion, chronic S. mansoni infection reduced total CYP content and all CYP-mediated activities evaluated in SW mice, including those catalyzed by CYP2E1 (PNPH), CYP1A (EROD, MROD) and 2B (BROD, PROD). In DBA/2 mice, however, CYP2A5- and 2E1-mediated activities remained unchanged while total CYP content and activities mediated by other CYP isoforms were depressed during chronic schistosomiasis.