54 resultados para TUMOR-CELLS
Resumo:
We evaluated the expression of 10 adhesion molecules on peripheral blood tumor cells of 17 patients with chronic lymphocytic leukemia, 17 with mantle-cell lymphoma, and 13 with nodal or splenic marginal B-cell lymphoma, all in the leukemic phase and before the beginning of any therapy. The diagnosis of B-cell non-Hodgkin's lymphomas was based on cytological, histological, immunophenotypic, and molecular biology methods. The mean fluorescence intensity of the adhesion molecules in tumor cells was measured by flow cytometry of CD19-positive cells and differed amongst the types of lymphomas. Comparison of chronic lymphocytic leukemia and mantle-cell lymphoma showed that the former presented a higher expression of CD11c and CD49c, and a lower expression of CD11b and CD49d adhesion molecules. Comparison of chronic lymphocytic leukemia and marginal B-cell lymphoma showed that the former presented a higher expression of CD49c and a lower expression of CD11a, CD11b, CD18, CD49d, CD29, and CD54. Finally, comparison of mantle-cell lymphoma and marginal B-cell lymphoma showed that marginal B-cell lymphoma had a higher expression of CD11a, CD11c, CD18, CD29, and CD54. Thus, the CD49c/CD49d pair consistently demonstrated a distinct pattern of expression in chronic lymphocytic leukemia compared with mantle-cell lymphoma and marginal B-cell lymphoma, which could be helpful for the differential diagnosis. Moreover, the distinct profiles of adhesion molecules in these diseases may be responsible for their different capacities to invade the blood stream.
Resumo:
We showed that guaraná (Paullinia cupana Mart var. sorbilis) had a chemopreventive effect on mouse hepatocarcinogenesis and reduced diethylnitrosamine-induced DNA damage. In the present experiment, we evaluated the effects of guaraná in an experimental metastasis model. Cultured B16/F10 melanoma cells (5 x 10(5) cells/animal) were injected into the tail vein of mice on the 7th day of guaraná treatment (2.0 mg P. cupana/g body weight, per gavage) and the animals were treated with guaraná daily up to 14 days until euthanasia (total treatment time: 21 days). Lung sections were obtained for morphometric analysis, apoptotic bodies were counted to calculate the apoptotic index and proliferating cell nuclear antigen-positive cells were counted to determine the proliferation index. Guaraná-treated (GUA) animals presented a 68.6% reduction in tumor burden area compared to control (CO) animals which were not treated with guaraná (CO: 0.84 ± 0.26, N = 6; GUA: 0.27 ± 0.24, N = 6; P = 0.0043), a 57.9% reduction in tumor proliferation index (CO: 23.75 ± 20.54, N = 6; GUA: 9.99 ± 3.93, N = 6; P = 0.026) and a 4.85-fold increase in apoptotic index (CO: 66.95 ± 22.95, N = 6; GUA: 324.37 ± 266.74 AB/mm², N = 6; P = 0.0152). In this mouse model, guaraná treatment decreased proliferation and increased apoptosis of tumor cells, consequently reducing the tumor burden area. We are currently investigating the molecular pathways of the effects of guaraná in cultured melanoma cells, regarding principally the cell cycle inhibitors and cyclins.
Resumo:
Our objective was to determine the presence of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2) and MMP-9 and specific tissue inhibitors of matrix metalloproteinase (TIMP-1 and TIMP-2) in tumor samples obtained from patients with primary breast cancer. We attempted to correlate these findings with the status of the sentinel lymph node (SLN) and clinical-pathological characteristics such as age, tumor size, histological type, histological grade, and vascular invasion. Tumor samples from 88 patients with primary breast cancer were analyzed. The immunoreactivity of VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2 in tumors was correlated with clinical and pathological features, as well as SLN status. Nonparametric, Mann-Whittney, Kruskal-Wallis, and Spearmann tests were used. Categorical variables were analyzed by the Pearson test. No statistically significant correlation was found between the amount of VEGF, MMP-2, MMP-9, TIMP-1, and TIMP-2 and the presence of tumor cells in the SLN. However, larger tumor diameter (P < 0.01) and the presence of vascular invasion (P < 0.01) were correlated positively with a positive SLN. A significant correlation of higher VEGF levels (P = 0.04) and lower TIMP-1 levels (P = 0.04) with ductal histology was also observed. Furthermore, lower TIMP-2 levels showed a statistically significant correlation with younger age (<50 years) and larger tumor diameter (2.0-5.0 cm). A positive SLN correlated significantly with a larger tumor diameter and the presence of vascular invasion. Higher VEGF and lower TIMP-1 levels were observed in patients with ductal tumors, while higher TIMP-1 levels were observed in lobular tumors.
Resumo:
Apatone™, a combination of menadione (2-methyl-1,4-naphthoquinone, VK3) and ascorbic acid (vitamin C, VC) is a new strategy for cancer treatment. Part of its effect on tumor cells is related to the cellular pro-oxidative imbalance provoked by the generation of hydrogen peroxide (H2O2) through naphthoquinone redox cycling. In this study, we attempted to find new naphthoquinone derivatives that would increase the efficiency of H2O2 production, thereby potentially increasing its efficacy for cancer treatment. The presence of an electron-withdrawing group in the naphthoquinone moiety had a direct effect on the efficiency of H2O2 production. The compound 2-bromo-1,4-naphthoquinone (BrQ), in which the bromine atom substituted the methyl group in VK3, was approximately 10- and 19-fold more efficient than VK3 in terms of oxygen consumption and H2O2 production, respectively. The ratio [H2O2]produced / [naphthoquinone]consumed was 68 ± 11 and 5.8 ± 0.2 (µM/µM) for BrQ and VK3, respectively, indicating a higher efficacy of BrQ as a catalyst for the autoxidation of ascorbic acid. Both VK3 and BrQ reacted with glutathione (GSH), but BrQ was the more effective substrate. Part of GSH was incorporated into the naphthoquinone, producing a nucleophilic substitution product (Q-SG). The depletion of BrQ by GSH did not prevent its redox capacity since Q-SG was also able to catalyze the production of reactive oxygen species. VK3/VC has already been submitted to clinical trials for the treatment of prostate cancer and has demonstrated promising results. However, replacement of VK3 with BrQ will open new lines of investigation regarding this approach to cancer treatment.
Resumo:
Natural products produced by microorganisms have been an important source of new substances and lead compounds for the pharmaceutical industry. Chromobacterium violaceum is a Gram-negative β-proteobacterium, abundant in water and soil in tropical and subtropical regions and it produces violacein, a pigment that has shown great pharmaceutical potential. Crude extracts of five Brazilian isolates of Chromobacterium sp (0.25, 2.5, 25, and 250 µg/mL) were evaluated in an in vitro antitumor activity assay with nine human tumor cells. Secondary metabolic profiles were analyzed by liquid chromatography and electrospray ionization mass spectrometry resulting in the identification of violacein in all extracts, whereas FK228 was detected only in EtCE 308 and EtCE 592 extracts. AcCE and EtCE 310 extracts showed selectivity for NCI/ADR-RES cells in the in vitro assay and were evaluated in vivo in the solid Ehrlich tumor model, resulting in 50.3 and 54.6% growth inhibition, respectively. The crude extracts of Chromobacterium sp isolates showed potential and selective antitumor activities for certain human tumor cells, making them a potential source of lead compounds. Furthermore, the results suggest that other compounds, in addition to violacein, deoxyviolacein and FK228, may be involved in the antitumor effect observed.
Resumo:
Among the most common features of highly invasive tumors, such as lung adenocarcinomas (AD) and squamous cell carcinomas (SqCC), is the massive degradation of the extracellular matrix. The remarkable qualitative and quantitative modifications of hyaluronidases (HAases), hyaluronan synthases (HAS), E-cadherin adhesion molecules, and the transforming growth factor β (TGF-β) may favor invasion, cellular motility, and proliferation. We examined HAase proteins (Hyal), HAS, E-cadherin, and TGF-β profiles in lung AD subtypes and SqCC obtained from smokers and non-smokers. Fifty-six patients, median age 64 years, who underwent lobectomy for AD (N = 31) and SqCC (N = 25) were included in the study. HAS-1, -2 and -3, and Hyal-1 and -3 were significantly more expressed by tumor cells than normal and stroma cells (P < 0.01). When stratified according to histologic types, HAS-3 and Hyal-1 immunoreactivity was significantly increased in tumor cells of AD (P = 0.01) and stroma of SqCC (P = 0.002), respectively. Tobacco history in patients with AD was significantly associated with increased HAS-3 immunoreactivity in tumor cells (P < 0.01). Stroma cells of SqCC from non-smokers presented a significant association with HAS-3 (P < 0.01). Hyal, HAS, E-cadherin, and TGF-β modulate a different tumor-induced invasive pathway in lung AD subgroups and SqCC. HAases in resected AD and SqCC were strongly related to the prognosis. Therefore, our findings suggest that strategies aimed at preventing high HAS-3 and Hyal-1 synthesis, or local responses to low TGF-β and E-cadherin, may have a greater impact in lung cancer prognosis.
Resumo:
The application of nanotechnology to medicine can provide important benefits, especially in oncology, a fact that has resulted in the emergence of a new field called Nanooncology. Nanoparticles can be engineered to incorporate a wide variety of chemotherapeutic or diagnostic agents. A nanocapsule is a vesicular system that exhibits a typical core-shell structure in which active molecules are confined to a reservoir or within a cavity that is surrounded by a polymer membrane or coating. Delivery systems based on nanocapsules are usually transported to a targeted tumor site and then release their contents upon change in environmental conditions. An effective delivery of the therapeutic agent to the tumor site and to the infiltrating tumor cells is difficult to achieve in many cancer treatments. Therefore, new devices are being developed to facilitate intratumoral distribution, to protect the active agent from premature degradation and to allow its sustained and controlled release. This review focuses on recent studies on the use of nanocapsules for cancer therapy and diagnosis.
Resumo:
The purpose of this study was to investigate the relationship between cyclin D1 expression and clinicopathological parameters in patients with prostate carcinoma. We assessed cyclin D1 expression by conventional immunohistochemistry in 85 patients who underwent radical prostatectomy for prostate carcinoma and 10 normal prostate tissue samples retrieved from autopsies. We measured nuclear immunostaining in the entire tumor area and based the results on the percentage of positive tumor cells. The preoperative prostate-specific antigen (PSA) level was 8.68±5.16 ng/mL (mean±SD). Cyclin D1 staining was positive (cyclin D1 expression in >5% of tumor cells) in 64 cases (75.4%) and negative (cyclin D1 expression in ≤5% of tumor cells) in 21 cases (including 15 cases with no immunostaining). Normal prostate tissues were negative for cyclin D1. Among patients with a high-grade Gleason score (≥7), 86% of patients demonstrated cyclin D1 immunostaining of >5% (P<0.05). In the crude analysis of cyclin D1 expression, the high-grade Gleason score group showed a mean expression of 39.6%, compared to 26.9% in the low-grade Gleason score group (P<0.05). Perineural invasion tended to be associated with cyclin D1 expression (P=0.07), whereas cyclin D1 expression was not associated with PSA levels or other parameters. Our results suggest that high cyclin D1 expression could be a potential marker for tumor aggressiveness.
Resumo:
Nuclear receptor subfamily 1, group I, member 3 (NR1I3) is reported to be a possible novel therapeutic target for some cancers, including lung, brain and hematopoietic tumors. Here, we characterized expression of NR1I3 in a mouse model of lung carcinogenesis induced by 4-(methylnitrosamino)-4-(3-pyridyl)-1-butanone (NNK), the most potent tobacco carcinogen. Lung tumors were collected from mice treated with NNK (400 mg/kg) and euthanized after 52 weeks. Benign and malignant lesions were formalin-fixed and paraffin-embedded for histology and immunohistochemistry, with samples snap-frozen for mRNA analysis. Immunohistochemically, we found that most macrophages and type I and II pneumocytes expressed NR1I3, whereas fibroblasts and endothelial cells were NR1I3−. Compared with benign lesions, malignant lesions had less NR1I3+ tumor cells. Gene expression analysis also showed an inverse correlation between NR1I3 mRNA expression and tumor size (P=0.0061), suggesting that bigger tumors expressed less NR1I3 transcripts, in accordance with our immunohistochemical NR1I3 tests. Our results indicate that NR1I3 expression decreased during progression of malignant lung tumors induced by NNK in mice.