56 resultados para Synchrotron radiation topography
Resumo:
Ionizing radiation can change the molecular structure and affect the biological properties of biomolecules. This has been employed to attenuate animal toxins. Crotamine is a strongly basic polypeptide (pI 10.3) from Crotalus durissus terrificus venom composed of 42 amino acid residues. It induces skeletal muscle spasms leading to a spastic paralysis of hind limbs in mice. The objective of the present study was to carry out a biochemical study and a toxic activity assay on native and irradiated crotamine. Crotamine was purified from C.d. terrificus venom by Sephadex G-100 gel filtration followed by ion-exchange chromatography, and irradiated at 2 mg/ml in 0.15 M NaCl with 2.0 kGy gamma radiation emitted by a 60Co source. The native and irradiated toxins were evaluated in terms of structure and toxic activity (LD50). Irradiation did not change the protein concentration, the electrophoretic profile or the primary structure of the protein although differences were shown by spectroscopic techniques. Gamma radiation reduced crotamine toxicity by 48.3%, but did not eliminate it.
Resumo:
The aim of the present study was to establish the extent of in vitro radioresponse of lymphocytes among 62 healthy adults of both genders and to estimate the distribution of baseline micronuclei and radiosensitivity among individuals of the study population using the cytochalasin block micronucleus test. A younger study group consisted of 10 males (mean age, 22.4 years; range, 21-27) and 12 females (mean age, 24.8 years; range, 20-29), whereas an older study group consisted of 18 males (mean age, 35.1 years; range, 30-44) and 22 females (mean age, 38.5 years; range, 30-48). For evaluation of radiosensitivity blood samples were irradiated in vitro using 60Co g-ray source. The radiation dose employed was 2 Gy, the dose rate 0.45 Gy/min. The study revealed a significant gender effect on baseline micronuclei favoring females (Z = 3.25, P < 0.001), while yields of radiation-induced micronuclei did not differ significantly (Z = 0.56, P < 0.56) between genders. The distribution of baseline micronuclei among the individuals tested followed Poisson distribution in both study groups and in both genders, whereas the distribution of radiosensitivity among individuals of the older study group did not fulfill Poisson expectations (Kolmogorov-Smirnof test, P < 0.01). In contrast to a nonsignificant difference in radiosensitivity between males and females of the same age group (Z = 1.97, P < 0.56), a statistically significant difference in radiosensitivity between younger and older group for both genders was found (Z = 3.03, P < 0.03). Since the individuals tested were healthy, the observed variability in radiation response is considered to be an early effect of ageing.
Resumo:
The objective of the present study was to evaluate changes in optic nerve head parameters, measured by confocal laser tomography, before and after trabeculectomy in order to identify outcome measures for the management of glaucoma. The optic nerve head of 22 eyes (22 patients) was analyzed by confocal laser tomography with the Heidelberg retinal tomogram (HRT) before and after trabeculectomy. The median time between the first HRT and surgery was 4.6 months (mean: 7.7 ± 8.3) and the median time between surgery and the second HRT was 10.8 months (mean: 12.0 ± 6.8). The patients were divided into two groups, i.e., those with the highest (group A) and lowest (group B) intraocular pressure (IOP) change after surgery. Differences in the 12 standard topographic parameters before and after surgery for each group were evaluated by the Wilcoxon signed rank test and the differences in these parameters between the two groups were compared by the Mann-Whitney rank sum test. Multiple regression analysis was used to evaluate the influence of the change in IOP (deltaIOP and deltaIOP%) and the changes in the other parameters. There were significant differences in the HRT measures before and after surgery in group A only for cup volume. In group B, no parameter was statistically different. The changes in group A were not significantly different than those in group B for any parameter (P > 0.004, Bonferroni correction for multiple comparisons). deltaIOP and deltaIOP% had a statistically significant effect on delta cup disk area, delta cup volume and delta mean cup depth. Changes in cup shape size were influenced significantly only by deltaIOP. Some optic disc parameters measured by HRT presented a significant improvement after filtering surgery, depending on the amount of IOP reduction. Long-term studies are needed to determine the usefulness of these findings as outcome measures in the management of glaucoma.
Resumo:
Gamma-irradiation (gamma-IR) is extensively used in the treatment of hormone-resistant prostate carcinoma. The objective of the present study was to investigate the effects of 60Co gamma-IR on the growth, cell cycle arrest and cell death of the human prostate cancer cell line DU 145. The viability of DU 145 cells was measured by the Trypan blue exclusion assay and the 3(4,5-dimethylthiazol-2-yl)-2,5,diphenyltetrazolium bromide test. Bromodeoxyuridine incorporation was used for the determination of cell proliferation. Cell cycle arrest and cell death were analyzed by flow cytometry. Superoxide dismutase (SOD), specifically CuZnSOD and MnSOD protein expression, after 10 Gy gamma-IR, was determined by Western immunoblotting analysis. gamma-IR treatment had a significant (P < 0.001) antiproliferative and cytotoxic effect on DU 145 cells. Both effects were time and dose dependent. Also, the dose of gamma-IR which inhibited DNA synthesis and cell proliferation by 50% was 9.7 Gy. Furthermore, gamma-IR induced cell cycle arrest in the G2/M phase and the percentage of cells in the G2/M phase was increased from 15% (control) to 49% (IR cells), with a nonsignificant induction of apoptosis. Treatment with 10 Gy gamma-IR for 24, 48, and 72 h stimulated CuZnSOD and MnSOD protein expression in a time-dependent manner, approximately by 3- to 3.5-fold. These data suggest that CuZnSOD and MnSOD enzymes may play an important role in the gamma-IR-induced changes in DU 145 cell growth, cell cycle arrest and cell death.
Resumo:
In a serial feature-positive conditional discrimination procedure the properties of a target stimulus A are defined by the presence or not of a feature stimulus X preceding it. In the present experiment, composite features preceded targets associated with two different topography operant responses (right and left bar pressing); matching and non-matching-to-sample arrangements were also used. Five water-deprived Wistar rats were trained in 6 different trials: X-R®Ar and X-L®Al, in which X and A were same modality visual stimuli and the reinforcement was contingent to pressing either the right (r) or left (l) bar that had the light on during the feature (matching-to-sample); Y-R®Bl and Y-L®Br, in which Y and B were same modality auditory stimuli and the reinforcement was contingent to pressing the bar that had the light off during the feature (non-matching-to-sample); A- and B- alone. After 100 training sessions, the animals were submitted to transfer tests with the targets used plus a new one (auditory click). Average percentages of stimuli with a response were measured. Acquisition occurred completely only for Y-L®Br+; however, complex associations were established along training. Transfer was not complete during the tests since concurrent effects of extinction and response generalization also occurred. Results suggest the use of both simple conditioning and configurational strategies, favoring the most recent theories of conditional discrimination learning. The implications of the use of complex arrangements for discussing these theories are considered.
Resumo:
Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. Previous studies showed that ozone oxidative preconditioning attenuated pathophysiological events mediated by reactive oxygen species. As inhalation of ozone induces lung injury, the aim of this study was to examine whether ozone oxidative preconditioning potentiates or attenuates the effects of irradiation on the lung. Rats were subjected to total body irradiation, with or without treatment with ozone oxidative preconditioning (0.72 mg/kg). Serum proinflammatory cytokine levels, oxidative damage markers, and histopathological analysis were compared at 6 and 72 h after total body irradiation. Irradiation significantly increased lung malondialdehyde levels as an end-product of lipoperoxidation. Irradiation also significantly decreased lung superoxide dismutase activity, which is an indicator of the generation of oxidative stress and an early protective response to oxidative damage. Ozone oxidative preconditioning plus irradiation significantly decreased malondialdehyde levels and increased the activity of superoxide dismutase, which might indicate protection of the lung from radiation-induced lung injury. Serum tumor necrosis factor alpha and interleukin-1 beta levels, which increased significantly following total body irradiation, were decreased with ozone oxidative preconditioning. Moreover, ozone oxidative preconditioning was able to ameliorate radiation-induced lung injury assessed by histopathological evaluation. In conclusion, ozone oxidative preconditioning, repeated low-dose intraperitoneal administration of ozone, did not exacerbate radiation-induced lung injury, and, on the contrary, it provided protection against radiation-induced lung damage.
Resumo:
According to the International Atomic Energy Agency (IAEA), a relatively significant number of radiological accidents have occurred in recent years mainly because of the practices referred to as potentially high-risk activities, such as radiotherapy, large irradiators and industrial radiography, especially in gammagraphy assays. In some instances, severe injuries have occurred in exposed persons due to high radiation doses. In industrial radiography, 80 cases involving a total of 120 radiation workers, 110 members of the public including 12 deaths have been recorded up to 2014. Radiological accidents in industrial practices in Brazil have mainly resulted in development of cutaneous radiation syndrome (CRS) in hands and fingers. Brazilian data include 5 serious cases related to industrial gammagraphy, affecting 7 radiation workers and 19 members of the public; however, none of them were fatal. Some methods of reconstructive dosimetry have been used to estimate the radiation dose to assist in prescribing medical treatment. The type and development of cutaneous manifestations in the exposed areas of a person is the first achievable gross dose estimation. This review article presents the state-of-the-art reconstructive dosimetry methods enabling estimation of local radiation doses and provides guidelines for medical handling of the exposed individuals. The review also presents the Chilean and Brazilian radiological accident cases to highlight the importance of reconstructive dosimetry.
Resumo:
Understanding the effects of radiation and its possible influence on the nervous system are of great clinical interest. However, there have been few electrophysiological studies on brain activity after exposure to ionizing radiation (IR). A new methodological approach regarding the assessment of the possible effects of IR on brain activity is the use of linear and nonlinear mathematical methods in the analysis of complex time series, such as brain oscillations measured using the electrocorticogram (ECoG). The objective of this study was to use linear and nonlinear mathematical methods as biomarkers of gamma radiation regarding cortical electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2 irradiated groups, evaluated at 24 h (IR24) and 90 days (IR90) after exposure to 18 Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed using power spectrum methods for the calculation of the power of delta, theta, alpha and beta rhythms and by means of the α-exponent of the detrended fluctuation analysis (DFA). Using both mathematical methods it was possible to identify changes in the ECoG, and to identify significant changes in the pattern of the recording at 24 h after irradiation. Some of these changes were persistent at 90 days after exposure to IR. In particular, the theta wave using the two methods showed higher sensitivity than other waves, suggesting that it is a possible biomarker of exposure to IR.
Resumo:
Low-level lasers are used at low power densities and doses according to clinical protocols supplied with laser devices or based on professional practice. Although use of these lasers is increasing in many countries, the molecular mechanisms involved in effects of low-level lasers, mainly on DNA, are controversial. In this study, we evaluated the effects of low-level red lasers on survival, filamentation, and morphology of Escherichia colicells that were exposed to ultraviolet C (UVC) radiation. Exponential and stationary wild-type and uvrA-deficientE. coli cells were exposed to a low-level red laser and in sequence to UVC radiation. Bacterial survival was evaluated to determine the laser protection factor (ratio between the number of viable cells after exposure to the red laser and UVC and the number of viable cells after exposure to UVC). Bacterial filaments were counted to obtain the percentage of filamentation. Area-perimeter ratios were calculated for evaluation of cellular morphology. Experiments were carried out in duplicate and the results are reported as the means of three independent assays. Pre-exposure to a red laser protected wild-type and uvrA-deficient E. coli cells against the lethal effect of UVC radiation, and increased the percentage of filamentation and the area-perimeter ratio, depending on UVC fluence and physiological conditions in the cells. Therapeutic, low-level red laser radiation can induce DNA lesions at a sub-lethal level. Consequences to cells and tissues should be considered when clinical protocols based on this laser are carried out.
Resumo:
The control and monitoring of radioactive elements in foodstuffs is fundamental for human health maintenance. This work presents procedures to measure radioactivity levels in powdered milk samples and also a brief discussion of radionuclide transference from the environment to mankind. The measurements were performed utilizing a high-resolution gamma-ray spectrometer using an HPGe detector. The results allowed the quantification of 40K, 137Cs and 208Tl radionuclides. For 40K the average activity was 482 ± 37 Bq/kg and for 137Cs and 208Tl the lower level of detection was, respectively, 3.7 ± 1.1 and 0.5 ± 0.2 (Bq/kg). The results obtained for the milk samples were compared to data found in the literature and to the limits established by the Brazilian National Commission of Nuclear Energy (CNEN) to assure its safety to human consuption.
Resumo:
In Brazil, although the coffee plantations are predominantly grown under full sunlight, the use of agroforestry systems can lead to socioeconomic advantages, thus providing a favorable environment to the crop by promoting its sustainability as well as environmental preservation. However, there is a lack of information on physiological quality of the coffee seeds produced under different levels of solar radiation. Within this context, the objective of this study was to evaluate the influence of different levels of solar radiation and maturation stages on the physiological quality of coffee (Coffea arabica L.) seeds, cv. Acaiá Cerrado MG-1474. Three levels of solar radiation (plants grown under full sunlight; under plastic screens of 35% shading; and under plastic screens of 50% shading) and three maturation stages (cherry, greenish-yellow and green) were assessed. Physiological quality of seeds was assessed by using germination test, first count of germination, abnormal seedlings, dead seeds, and seedlings with open cotyledonary leaves. Electrophoretic analysis of isoenzymes catalase, esterase, superoxide dismutase and peroxidase was also performed. With the evolution of development the coffee seeds presents increases on physiological quality, and at its beginning the seeds show improvements on quality with the reduction of solar radiation.