67 resultados para Superoxide Dismutase-2


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Copper toxicity in soil was evaluated using biomarkers of oxidative stress (catalase enzyme activity, superoxide dismutase and lipid peroxidation) in the earthworm Eisenia foetida. Agricultural topsoils from mining areas of the Aconcagua river basin were collected. Total copper concentrations were in the range of 94-959 mg kg-1, while the exchangeable copper concentrations were in the range of 46-2225 µg kg-1. Earthworms exposed to soil with exchangeable copper concentrations above 32 µg kg-1 showed an increase in catalase activity. Parameters of antioxidant activity were more sensitive than the weight change and thus can be used as appropriate biomarkers in Eisenia foetida.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The weaning period of piglets is characterized by physiological alterations, such as decreased weight gain, increased reactive oxygen species (ROS) and increased serum cortisol levels with possible effects on the immune response. The effect of parenteral administration of vitamins A, D and E on production performance, oxidative metabolism, and the function of polymorphonuclear leukocytes (PMNLs) was assessed in piglets during the weaning period. The sample was comprised of 20 male piglets that were given an injectable ADE vitamin combination (135,000 IU vitamin A, 40,000 IU vitamin D and 40mg vitamin E/ animal) at 20 and 40 days of age. Weight gain, concentration of reduced glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) and the microbicidal and phagocytic activity of PMNLs were assessed. No difference was observed in the average piglet weight during the study; however, a greater percentage of weight gain was observed after weaning in the treated group. The concentrations of GSH and SOD did not differ between groups, although lipid peroxidation was greater in the control group at 60 days of age. The investigated variables of oxidative metabolism were correlated as follows: -0.41 for GSH and MDA, -0.54 for GSH and SOD and 0.34 for MDA and SOD. The intensity of intracellular ROS production, the percentage of ROS-producing PMNLs and the intensity of phagocytosis by PMNLs did not differ between treatment groups. Administration of the injectable ADE combination improved the percentage of weight gain between 20 and 40 days of age, decreased oxidative stress at 60 days of age and did not influence the function of PMNLs in piglets.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Horses used for the game of polo experience abrupt and frequent changes in exercise intensity. To meet this variable energy demand, the horses use both aerobic and anaerobic pathways in varying proportions and intensities. In this context, there must be a balance between the formation of reactive oxygen species (ROS) and the action of antioxidants to prevent oxidative stress and its consequences. The effect of supplementation with an ADE vitamin complex on oxidative metabolism was evaluated in 18 crossbred horses randomly divided between a treated group (TG) and a control group (CG). The TG animals received the ADE vitamin complex (1mL/50 kg of body weight) by deep intramuscular injection at 30 and 15 days before the game. The CG horses received 10ml of saline by the same administration route and schedule. During the polo match, the animals played for a total of 7.5 min. Blood samples were collected on the same days as the treatments were administered, and immediately before and at 15, 90 and 180 minutes after the game. The concentrations of creatine phosphokinase (CK), lactate dehydrogenase (LDH), lactate, glucose, aspartate aminotransferase (AST), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured in the blood samples. After the game, the TG demonstrated higher levels of AST, lactate and glucose than the CG, suggesting more efficient energy use by the treated animals. The higher GSH and lower lactate levels in the TG before the game suggest the presence of a greater antioxidant supply in the treated animals. The maintenance of the MDA levels indicates that neither of the groups exhibited oxidative stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nine isolates of Bipolaris sorokiniana were inoculated on three cultivars of wheat plants (susceptible, moderately resistant, resistant). Eight days after the inoculation, the isolates were recovered (27 isolates) and the following isozymatic patterns were analyzed: esterase, alkaline phosphatase, acid phosphatase, malate dehydrogenase, and superoxide dismutase. The esterase system was the most polymorphic, and the isolates recovered from the susceptible cultivar showed the highest variability. This is evidence that this cultivar exerts low selection pressure on the pathogen

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The free form of the iron ion is one of the strongest oxidizing agents in the cellular environment. The effect of iron at different concentrations (0, 1, 5, 10, 50, and 100 µM Fe3+) on the normal human red blood cell (RBC) antioxidant system was evaluated in vitro by measuring total (GSH) and oxidized (GSSG) glutathione levels, and superoxide dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and reductase (GSH-Rd) activities. Membrane lipid peroxidation was assessed by measuring thiobarbituric acid reactive substance (TBARS). The RBC were incubated with colloidal iron hydroxide and phosphate-buffered saline, pH 7.45, at 37oC, for 60 min. For each assay, the results for the control group were: a) GSH = 3.52 ± 0.27 µM/g Hb; b) GSSG = 0.17 ± 0.03 µM/g Hb; c) GSH-Px = 19.60 ± 1.96 IU/g Hb; d) GSH-Rd = 3.13 ± 0.17 IU/g Hb; e) catalase = 394.9 ± 22.8 IU/g Hb; f) SOD = 5981 ± 375 IU/g Hb. The addition of 1 to 100 µM Fe3+ had no effect on the parameters analyzed. No change in TBARS levels was detected at any of the iron concentrations studied. Oxidative stress, measured by GSH kinetics over time, occurs when the RBC are incubated with colloidal iron hydroxide at concentrations higher than 10 µM of Fe3+. Overall, these results show that the intact human RBC is prone to oxidative stress when exposed to Fe3+ and that the RBC has a potent antioxidant system that can minimize the potential damage caused by acute exposure to a colloidal iron hydroxide in vitro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of the present study was to investigate the effects of experimental diabetes on the oxidant and antioxidant status of latissimus dorsi (LD) muscles of male Wistar rats (220 ± 5 g, N = 11). Short-term (5 days) diabetes was induced by a single injection of streptozotocin (STZ, 50 mg/kg, iv; glycemia >300 mg/dl). LD muscle of STZ-diabetic rats presented higher levels of thiobarbituric acid reactive substances (TBARS) and chemiluminescence (0.36 ± 0.02 nmol/mg protein and 14706 ± 1581 cps/mg protein) than LD muscle of normal rats (0.23 ± 0.04 nmol/mg protein and 7389 ± 1355 cps/mg protein). Diabetes induced a 92% increase in catalase and a 27% increase in glutathione S-transferase activities in LD muscle. Glutathione peroxidase activity was reduced (58%) in STZ-diabetic rats and superoxide dismutase activity was similar in LD muscle of both groups. A positive correlation was obtained between catalase activity and the oxidative stress of LD, as evaluated in terms of TBARS (r = 0.78) and by chemiluminescence (r = 0.89). Catalase activity also correlated inversely with glutathione peroxidase activity (r = 0.79). These data suggest that an increased oxidative stress in LD muscle of diabetic rats may be related to skeletal muscle myopathy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human and animal immune functions present sex dimorphism that seems to be mainly regulated by sex hormones. In the present study, the activities of the antioxidant enzymes total superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) were measured in intraperitoneal resident macrophages from adult male and female rats. In addition to comparing males and females, we also examined the regulation of these enzyme activities in macrophages by sex steroids. GSH-Px activity did not differ between male and female macrophages. However, both total SOD and CAT activities were markedly higher in females than in males (83 and 180%). Removal of the gonads in both males and females (comparison between castrated groups) increased the difference in SOD activity from 83 to 138% and reduced the difference in CAT activity from 180 to 86%. Castration and testosterone administration did not significantly modify the activities of the antioxidant enzymes in male macrophages. Ovariectomy did not affect SOD or GSH-Px activity but markedly reduced (48%) CAT activity. This latter change was fully reversed by estrogen administration, whereas progesterone had a smaller effect. These results led us to conclude that differences in the SOD and CAT activities may partially explain some of the differences in immune function reported for males and females. Also, estrogen is a potent regulator of CAT in macrophages and therefore this enzyme activity in macrophages may vary considerably during the menstrual cycle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Idarubicin is an anthracycline antibiotic extensively used in acute leukemia. In the present study we investigated whether vitamin E and catechin can reduce the toxic effects of idarubicin. Vitamin E (200 IU kg-1 week-1), catechin (200 mg kg-1 week-1), idarubicin (5 mg kg-1 week-1), idarubicin + vitamin E (200 IU kg-1 week-1), and idarubicin + catechin (200 mg kg-1 week-1) combinations were given to male Sprague-Dawley rats weighing 210 to 230 g (N = 6/group). Idarubicin-treated animals exhibited a decrease in body and heart weight, a decrease in myocardial contractility, and changes in ECG parameters (P<0.01). Catechin + idarubicin- and vitamin E + idarubicin-treated groups exhibited similar alterations, but changes were attenuated in comparison to those in cardiac muscle of idarubicin-treated rats (P<0.05). Superoxide dismutase and catalase activity was reduced in the idarubicin-treated group (P<0.05). Glutathione peroxidase levels were decreased in the idarubicin-treated group (P<0.05) and reached maximum concentrations in the catechin- and catechin + idarubicin-treated groups compared to control (P<0.01). Malondialdehyde activity was decreased in the catechin + idarubicin-treated groups compared to control and increased in the other groups, reaching maximum concentrations in the vitamin E-treated group (P<0.01). In electron microscopy studies, swelling of the mitochondria and dilatation of the sarcoplasmic reticulum of myocytes were observed in the idarubicin-treated groups. In groups that were given idarubicin + vitamin E and idarubicin + catechin, the only morphological change was a weak dilatation of the sarcoplasmic reticulum. We conclude that catechin and vitamin E significantly reduce idarubicin-induced cardiotoxicity in rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular oxygen (O2) is the premier biological electron acceptor that serves vital roles in fundamental cellular functions. However, with the beneficial properties of O2 comes the inadvertent formation of reactive oxygen species (ROS) such as superoxide (O2·-), hydrogen peroxide, and hydroxyl radical (OH·). If unabated, ROS pose a serious threat to or cause the death of aerobic cells. To minimize the damaging effects of ROS, aerobic organisms evolved non-enzymatic and enzymatic antioxidant defenses. The latter include catalases, peroxidases, superoxide dismutases, and glutathione S-transferases (GST). Cellular ROS-sensing mechanisms are not well understood, but a number of transcription factors that regulate the expression of antioxidant genes are well characterized in prokaryotes and in yeast. In higher eukaryotes, oxidative stress responses are more complex and modulated by several regulators. In mammalian systems, two classes of transcription factors, nuclear factor kB and activator protein-1, are involved in the oxidative stress response. Antioxidant-specific gene induction, involved in xenobiotic metabolism, is mediated by the "antioxidant responsive element" (ARE) commonly found in the promoter region of such genes. ARE is present in mammalian GST, metallothioneine-I and MnSod genes, but has not been found in plant Gst genes. However, ARE is present in the promoter region of the three maize catalase (Cat) genes. In plants, ROS have been implicated in the damaging effects of various environmental stress conditions. Many plant defense genes are activated in response to these conditions, including the three maize Cat and some of the superoxide dismutase (Sod) genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study was designed to evaluate the time course changes in peripheral markers of oxidative stress in a chronic HgCl2 intoxication model. Twenty male adult Wistar rats were treated subcutaneously daily for 30 days and divided into two groups of 10 animals each: Hg, which received HgCl2 (0.16 mg kg-1 day-1), and control, receiving the same volume of saline solution. Blood was collected at the first, second and fourth weeks of Hg administration to evaluate lipid peroxidation (LPO), total radical trapping antioxidant potential (TRAP), and superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and catalase (CAT). HgCl2 administration induced a rise (by 26%) in LPO compared to control (143 ± 10 cps/mg hemoglobin) in the second week and no difference was found at the end of the treatment. At that time, GST and GPx were higher (14 and 24%, respectively) in the Hg group, and Cu,Zn-SOD was lower (54%) compared to control. At the end of the treatment, Cu,Zn-SOD and CAT were higher (43 and 10%, respectively) in the Hg group compared to control (4.6 ± 0.3 U/mg protein; 37 ± 0.9 pmol/mg protein, respectively). TRAP was lower (69%) in the first week compared to control (43.8 ± 1.9 mM Trolox). These data provide evidence that HgCl2 administration is accompanied by systemic oxidative damage in the initial phase of the process, which leads to adaptive changes in the antioxidant reserve, thus decreasing the oxidative injury at the end of 30 days of HgCl2 administration. These results suggest that a preventive treatment with antioxidants would help to avoid oxidative damage in subjects with chronic intoxication.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sex differences in the development of hypertension and cardiovascular disease have been described in humans and in animal models. In this paper we will review some of our studies which have as their emphasis the examination of the role of sex differences and sex steroids in modulating the central actions of angiotensin II (ANG II) via interactions with free radicals and nitric oxide, generating pathways within brain circumventricular organs and in central sympathomodulatory systems. Our studies indicate that low-dose infusions of ANG II result in hypertension in wild-type male mice but not in intact wild-type females. Furthermore, we have demonstrated that ANG II-induced hypertension in males is blocked by central infusions of the androgen receptor antagonist, flutamide, and by central infusions of the superoxide dismutase mimetic, tempol. We have also found that, in comparison to females, males show greater levels of intracellular reactive oxygen species in circumventricular organ neurons following long-term ANG II infusions. In female mice, ovariectomy, central blockade of estrogen receptors or total knockout of estrogen a receptors augments the pressor effects of ANG II. Finally, in females but not in males, central blockade of nitric oxide synthase increases the pressor effects of ANG II. Taken together, these results suggest that sex differences and estrogen and testosterone play important roles in the development of ANG II-induced hypertension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to determine the liver oxidative stress status of grey mullets living in heavy-metal-rich polluted Ennore estuary compared with unpolluted Kovalam estuary. Fish were collected from both estuaries during the monsoon and summer seasons from October 2004 to September 2006. Fish liver homogenate (N = 20 per group) was prepared for evaluating oxidative stress parameters. Fish living in the polluted estuary had significantly higher lipid oxidation products, conjugated dienes (0.346 ± 0.017 vs 0.141 ± 0.012 DA233/mg protein), lipid hydroperoxides (0.752 ± 0.032 vs 0.443 ± 0.03 nmol/mg protein), and lipid peroxides (3.447 ± 0.14vs 1.456 ± 0.096 nmol MDA/mg protein) than those of the unpolluted estuary during the summer. In contrast, significantly lower levels of superoxide dismutase (20.39 ± 1.14 vs 53.63 ± 1.48 units/mg protein) and catalase (116 ± 6.87vs 153 ± 8.92 units/mg protein) were detected in the liver of fish from the polluted estuary (Ennore) compared to fish from the unpolluted estuary (Kovalam) during the summer. Variations in most of the oxidative stress parameters were observed between the summer and monsoon seasons, indicating the importance of seasonal variation for estuaries and their inhabitants.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(-)-∆9-Tetrahydrocannabinol (∆9-THC), a psychoactive component of marijuana, has been reported to induce oxidative damage in vivo and in vitro. In this study, we administered ∆9-THC to healthy C57BL/6J mice aged 15 weeks in order to determine its effect on hepatic redox state. Mice were divided into 3 groups: ∆9-THC (N = 10), treated with 10 mg/kg body weight ∆9-THC daily; VCtrl (N = 10), treated with vehicle [1:1:18, cremophor EL® (polyoxyl 35 castor oil)/ethanol/saline]; Ctrl (N = 10), treated with saline. Animals were injected ip twice a day with 5 mg/kg body weight for 10 days. Lipid peroxidation, protein carbonylation and DNA oxidation were used as biomarkers of oxidative stress. The endogenous antioxidant defenses analyzed were glutathione (GSH) levels as well as enzyme activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione reductase, and glutathione peroxidase (GPx) in liver homogenates. The levels of mRNA of the cannabinoid receptors CB1 and CB2 were also monitored. Treatment with ∆9-THC did not produce significant changes in oxidative stress markers or in mRNA levels of CB1 and CB2 receptors in the liver of mice, but attenuated the increase in the selenium-dependent GPx activity (Δ9-THC: 8%; VCtrl: 23% increase) and the GSH/oxidized GSH ratio (Δ9-THC: 61%; VCtrl: 96% increase), caused by treatment with the vehicle. Δ9-THC administration did not show any harmful effects on lipid peroxidation, protein carboxylation or DNA oxidation in the healthy liver of mice but attenuated unexpected effects produced by the vehicle containing ethanol/cremophor EL®.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent studies have reported that exogenous gangliosides, the sialic acid-containing glycosphingolipids, are able to modulate many cellular functions. We examined the effect of micelles of mono- and trisialoganglioside GM1 and GT1b on the production of reactive oxygen species by stimulated human polymorphonuclear neutrophils using different spectroscopic methods. The results indicated that exogenous gangliosides did not influence extracellular superoxide anion (O2.-) generation by polymorphonuclear neutrophils activated by receptor-dependent formyl-methionyl-leucyl-phenylalanine. However, when neutrophils were stimulated by receptor-bypassing phorbol 12-myristate 13-acetate (PMA), gangliosides above their critical micellar concentrations prolonged the lag time preceding the production in a concentration-dependent way, without affecting total extracellular O2.- generation detected by superoxide dismutase-inhibitable cytochrome c reduction. The effect of ganglioside GT1b (100 µM) on the increase in lag time was shown to be significant by means of both superoxide dismutase-inhibitable cytochrome c reduction assay and electron paramagnetic resonance spectroscopy (P < 0.0001 and P < 0.005, respectively). The observed phenomena can be attributed to the ability of ganglioside micelles attached to the cell surface to slow down PMA uptake, thus increasing the diffusion barrier and consequently delaying membrane events responsible for PMA-stimulated O2.- production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this study was to investigate the protective effects of ischemic post-conditioning on damage to the barrier function of the small intestine caused by limb ischemia-reperfusion injury. Male Wistar rats were randomly divided into 3 groups (N = 36 each): sham operated (group S), lower limb ischemia-reperfusion (group LIR), and post-conditioning (group PC). Each group was divided into subgroups (N = 6) according to reperfusion time: immediate (0 h; T1), 1 h (T2), 3 h (T3), 6 h (T4), 12 h (T5), and 24 h (T6). In the PC group, 3 cycles of reperfusion followed by ischemia (each lasting 30 s) were applied immediately. At all reperfusion times (T1-T6), diamine oxidase (DAO), superoxide dismutase (SOD), and myeloperoxidase (MPO) activity, malondialdehyde (MDA) intestinal tissue concentrations, plasma endotoxin concentrations, and serum DAO, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) concentrations were measured in sacrificed rats. Chiu’s pathology scores for small intestinal mucosa were determined under a light microscope and showed that damage to the small intestinal mucosa was lower in group PC than in group LIR. In group PC, tissue DAO and SOD concentrations at T2 to T6, and IL-10 concentrations at T2 to T5 were higher than in group LIR (P < 0.05); however, tissue MPO and MDA concentrations, and serum DAO and plasma endotoxin concentrations at T2 to T6, as well as TNF-α at T2 and T4 decreased significantly (P < 0.05). These results show that ischemic post-conditioning attenuated the permeability of the small intestines after limb ischemia-reperfusion injury. The protective mechanism of ischemic post-conditioning may be related to inhibition of oxygen free radicals and inflammatory cytokines that cause organ damage.