47 resultados para Submarine topography


Relevância:

10.00% 10.00%

Publicador:

Resumo:

To quantify the effects of methylmercury (MeHg) on amacrine and on ON-bipolar cells in the retina, experiments were performed in MeHg-exposed groups of adult trahiras (Hoplias malabaricus) at two dose levels (2 and 6 µg/g, ip). The retinas of test and control groups were processed by mouse anti-parvalbumin and rabbit anti-alphaprotein kinase C (alphaPKC) immunocytochemistry. Morphology and soma location in the inner nuclear layer were used to identify immunoreactive parvalbumin (PV-IR) and alphaPKC (alphaPKC-IR) in wholemount preparations. Cell density, topography and isodensity maps were estimated using confocal images. PV-IR was detected in amacrine cells in the inner nuclear layer and in displaced amacrine cells from the ganglion cell layer, and alphaPKC-IR was detected in ON-bipolar cells. The MeHg-treated group (6 µg/g) showed significant reduction of the ON-bipolar alphaPKC-IR cell density (mean density = 1306 ± 393 cells/mm²) compared to control (1886 ± 892 cells/mm²; P < 0.001). The mean densities found for amacrine PV-IR cells in MeHg-treated retinas were 1040 ± 56 cells/mm² (2 µg/g) and 845 ± 82 cells/mm² (6 µg/g), also lower than control (1312 ± 31 cells/mm²; P < 0.05), differently from the data observed in displaced PV-IR amacrine cells. These results show that MeHg changed the PV-IR amacrine cell density in a dose-dependent way, and reduced the density of alphaKC-IR bipolar cells at the dose of 6 µg/g. Further studies are needed to identify the physiological impact of these findings on visual function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the present study was to determine the adequate cortical regions based on the signal-to-noise ratio (SNR) for somatosensory evoked potential (SEP) recording. This investigation was carried out using magnitude-squared coherence (MSC), a frequency domain objective response detection technique. Electroencephalographic signals were collected (International 10-20 System) from 38 volunteers, without history of neurological pathology, during somatosensory stimulation. Stimuli were applied to the right posterior tibial nerve at the rate of 5 Hz and intensity slightly above the motor threshold. Response detection was based on rejecting the null hypothesis of response absence (significance level α= 0.05 and M = 500 epochs). The best detection rates (maximum percentage of volunteers for whom the response was detected for the frequencies between 4.8 and 72 Hz) were obtained for the parietal and central leads mid-sagittal and ipsilateral to the stimulated leg: C4 (87%), P4 (82%), Cz (89%), and Pz (89%). The P37-N45 time-components of the SEP can also be observed in these leads. The other leads, including the central and parietal contralateral and the frontal and fronto-polar leads, presented low detection capacity. If only contralateral leads were considered, the centro-parietal region (C3 and P3) was among the best regions for response detection, presenting a correspondent well-defined N37; however, this was not observed in some volunteers. The results of the present study showed that the central and parietal regions, especially sagittal and ipsilateral to the stimuli, presented the best SNR in the gamma range. Furthermore, these findings suggest that the MSC can be a useful tool for monitoring purposes.