52 resultados para Strip of ducts
Resumo:
The meristematic endodermis in adventitious roots of Richterago species originates in one of the fundamental meristem cells, which undergo sucessive anticlinal and periclinal divisions to build the inner cortex. The meristematic endodermis or proendodermis remains as a meristematic layer until its differentiation into endodermis, with Casparian strip. When sieve elements differentiate, endodermic secretory canals of esquizogenous origin are present at the region adjacent to primary phloem. Articulated laticifers, with cells perforated at both terminal and transversal walls, also occur during initial phases of secondary development. Presence of inulin as reserve carbohydrate in the inner cortex and vascular tissue may be related to abiotic factors, as an adaptive strategy of these species.
Resumo:
Cyperus giganteus shows Kranz anatomy of the clorocyperoid type or with two sheaths, one internal, adjacent to the vascular system and known as Kranz sheath, with thin-walled cells and a large number of organelles, mainly chloroplasts; and an external sheath, the mestome sheath or endodermis, the cells of which present thickened walls, are without chloroplasts and possess a suberin lamella, together with the casparian strip which are detected in early stages of differentiation. The development of the vascular bundles shows the Kranz sheath originating from the procambial as well as the mestome sheath. The chloroplasts of the Kranz cells are relatively larger, with convoluted thylakoids and a prominent peripheral reticulum, while the chloroplasts of the mesophyll cells are relatively smaller, with thylakoids forming grana and a sparse peripheral reticulum. These ultrastructural characteristics show similarities to those of other species of the genus Cyperus.
Resumo:
The histopathology of the liver is fundamental for the differential diagnosis between intra- and extrahepatic causes of neonatal cholestasis. However, histopathological findings may overlap and there is disagreement among authors concerning those which could discriminate between intra- and extrahepatic cholestasis. Forty-six liver biopsies (35 wedge biopsies and 11 percutaneous biopsies) and one specimen from a postmortem examination, all from patients hospitalized for neonatal cholestasis in the Pediatrics Service of Hospital de Clínicas de Porto Alegre, were prospectively studied using a specially designed histopathological protocol. At least 4 of 5 different stains were used, and 46 hepatic histopathological variables related to the differential diagnosis of neonatal cholestasis were studied. The findings were scored for severity on a scale from 0 to 4. Sections which showed less than 3 portal spaces were excluded from the study. Sections were examined by a pathologist who was unaware of the final diagnosis of each case. Bile tract permeability was defined by scintigraphy of the bile ducts and operative cholangiography. The F test and discriminant analysis were used as statistical methods for the study of the hepatic histopathological variables. The chi-square method with Yates correction was used to relate the age of the patients on the date of the histopathological study to the discriminatory variables between intra- and extrahepatic cholestasis selected by the discriminant function test. The most valuable hepatic histopathological variables for the discrimination between intra- and extrahepatic cholestasis, in decreasing order of importance, were periportal ductal proliferation, portal ductal proliferation, portal expansion, cholestasis in neoductules, foci of myeloid metaplasia, and portal-portal bridges. The only variable which pointed to the diagnosis of intrahepatic cholestasis was myeloid metaplasia. Due to the small number of patients who were younger than 60 days on the date of the histopathological study (N = 6), no variable discriminated between intra- and extrahepatic cholestasis before the age of 2 months and all of them, except for the portal expansion, were discriminatory after this age. In infants with cholestasis, foci of myeloid metaplasia, whenever present in the liver biopsy, suggested intrahepatic cholestasis. Periportal ductal proliferation, portal ductal proliferation, portal expansion, cholestasis in neoductules, portal cholestasis and portal-portal bridges suggested extrahepatic obstructive cholestasis.
Resumo:
High magnesium concentration inhibits the effect of arginine vasopressin (AVP) on smooth muscle contraction and platelet aggregation and also influences hepatocyte AVP receptor binding. The aim of this study was to determine the role of magnesium concentration [Mg2+] in AVP-stimulated water transport in the kidney collecting duct. The effect of low and high peritubular [Mg2+] on the AVP-stimulated osmotic water permeability coefficient (Pf) was evaluated in the isolated perfused rabbit cortical collecting duct (CCD). Control tubules bathed and perfused with standard Ringer bicarbonate solution containing 1 mM Mg2+ presented a Pf of 223.9 ± 27.2 µm/s. When Mg2+ was not added to the bathing solution, an increase in the AVP-stimulated Pf to 363.1 ± 57.2 µm/s (P<0.05) was observed. An elevation of Mg2+ to 5 mM resulted in a decrease in Pf to 202.9 ± 12.6 µm/s (P<0.05). This decrease in the AVP-stimulated Pf at 5 mM Mg2+ persisted when the CCDs were returned to 1 mM Mg2+, Pf = 130.2 ± 20.3 µm/s, and was not normalized by the addition of 8-[4-chlorophenylthio]-adenosine 3',5'-cyclic monophosphate, a cAMP analogue, to the preparation. These data indicate that magnesium may play a modulatory role in the action of AVP on CCD osmotic water permeability, as observed in other tissues.
Resumo:
In the 70's, pancreatic islet transplantation arose as an attractive alternative to restore normoglycemia; however, the scarcity of donors and difficulties with allotransplants, even under immunosuppressive treatment, greatly hampered the use of this alternative. Several materials and devices have been developed to circumvent the problem of islet rejection by the recipient, but, so far, none has proved to be totally effective. A major barrier to transpose is the highly organized islet architecture and its physical and chemical setting in the pancreatic parenchyma. In order to tackle this problem, we assembled a multidisciplinary team that has been working towards setting up the Human Pancreatic Islets Unit at the Chemistry Institute of the University of São Paulo, to collect and process pancreas from human donors, upon consent, in order to produce purified, viable and functional islets to be used in transplants. Collaboration with the private enterprise has allowed access to the latest developed biomaterials for islet encapsulation and immunoisolation. Reasoning that the natural islet microenvironment should be mimicked for optimum viability and function, we set out to isolate extracellular matrix components from human pancreas, not only for analytical purposes, but also to be used as supplementary components of encapsulating materials. A protocol was designed to routinely culture different pancreatic tissues (islets, parenchyma and ducts) in the presence of several pancreatic extracellular matrix components and peptide growth factors to enrich the beta cell population in vitro before transplantation into patients. In addition to representing a therapeutic promise, this initiative is an example of productive partnership between the medical and scientific sectors of the university and private enterprises.
Resumo:
Whole blood samples (N = 295) were obtained from different locations in Amazonas and Sucre States, in Venezuela. Malaria was diagnosed by microscopy, OptiMAL™ and polymerase chain reaction (PCR), with Plasmodium vivax, P. falciparum, and P. malariae being detected when possible. We identified 93 infections, 66 of which were caused by P. vivax, 26 by P. falciparum, and 1 was a mixed infection. No infection caused by P. malariae was detected. The sensitivity and specificity of each diagnostic method were high: 95.7 and 97.9% for microscopy, 87.0 and 97.9% for OptiMAL, and 98.0 and 100% for PCR, respectively. Most samples (72.2%) showed more than 5000 parasites/µL blood. The sensitivity of the diagnosis by microscopy and OptiMAL decreased with lower parasitemia. All samples showing disagreement among the methods were reevaluated, but the first result was used for the calculations. Parasites were detected in the 6 false-negative samples by microscopy after the second examination. The mixed infection was only detected by PCR, while the other methods diagnosed it as P. falciparum (microscopy) or P. vivax (OptiMAL) infection. Most of the false results obtained with the OptiMAL strip were related to the P. falciparum-specific band, including 3 species misdiagnoses, which could be related to the test itself or to genetic variation of the Venezuelan strains. The use of the microscopic method for malaria detection is recommended for its low cost but is very difficult to implement in large scale, population-based studies; thus, we report here more efficient methods suitable for this purpose.
Resumo:
Aldosterone concentrations vary in advanced chronic renal failure (CRF). The isozyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), which confers aldosterone specificity for mineralocorticoid receptors in distal tubules and collecting ducts, has been reported to be decreased or normal in patients with renal diseases. Our objective was to determine the role of aldosterone and 11β-HSD2 renal microsome activity, normalized for glomerular filtration rate (GFR), in maintaining K+ homeostasis in 5/6 nephrectomized rats. Male Wistar rats weighing 180-220 g at the beginning of the study were used. Rats with experimental CRF obtained by 5/6 nephrectomy (N = 9) and sham rats (N = 10) were maintained for 4 months. Systolic blood pressure and plasma creatinine (Pcr) concentration were measured at the end of the experiment. Sodium and potassium excretion and GFR were evaluated before and after spironolactone administration (10 mg·kg-1·day-1 for 7 days) and 11β-HSD2 activity on renal microsomes was determined. Systolic blood pressure (means ± SEM; Sham = 105 ± 8 and CRF = 149 ± 10 mmHg) and Pcr (Sham = 0.42 ± 0.03 and CRF = 2.53 ± 0.26 mg/dL) were higher (P < 0.05) while GFR (Sham = 1.46 ± 0.26 and CRF = 0.61 ± 0.06 mL/min) was lower (P < 0.05) in CRF, and plasma aldosterone (Pald) was the same in the two groups. Urinary sodium and potassium excretion was similar in the two groups under basal conditions but, after spironolactone treatment, only potassium excretion was decreased in CRF rats (sham = 0.95 ± 0.090 (before) vs 0.89 ± 0.09 µEq/min (after) and CRF = 1.05 ± 0.05 (before) vs 0.37 ± 0.07 µEq/min (after); P < 0.05). 11β-HSD2 activity on renal microsomes was lower in CRF rats (sham = 0.807 ± 0.09 and CRF = 0.217 ± 0.07 nmol·min-1·mg protein-1; P < 0.05), although when normalized for mL GFR it was similar in both groups. We conclude that K+ homeostasis is maintained during CRF development despite normal Pald levels. This adaptation may be mediated by renal 11β-HSD2 activity, which, when normalized for GFR, became similar to that of control rats, suggesting that mineralocorticoid receptors maintain their aldosterone selectivity.