62 resultados para Spatial Data Infrastructure (SDI)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The assessment of spatial uncertainty in the prediction of nutrient losses by erosion associated with landscape models is an important tool for soil conservation planning. The purpose of this study was to evaluate the spatial and local uncertainty in predicting depletion rates of soil nutrients (P, K, Ca, and Mg) by soil erosion from green and burnt sugarcane harvesting scenarios, using sequential Gaussian simulation (SGS). A regular grid with equidistant intervals of 50 m (626 points) was established in the 200-ha study area, in Tabapuã, São Paulo, Brazil. The rate of soil depletion (SD) was calculated from the relation between the nutrient concentration in the sediments and the chemical properties in the original soil for all grid points. The data were subjected to descriptive statistical and geostatistical analysis. The mean SD rate for all nutrients was higher in the slash-and-burn than the green cane harvest scenario (Student’s t-test, p<0.05). In both scenarios, nutrient loss followed the order: Ca>Mg>K>P. The SD rate was highest in areas with greater slope. Lower uncertainties were associated to the areas with higher SD and steeper slopes. Spatial uncertainties were highest for areas of transition between concave and convex landforms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate sampling density on the prediction accuracy of soil orders, with high spatial resolution, in a viticultural zone of Serra Gaúcha, Southern Brazil. A digital elevation model (DEM), a cartographic base, a conventional soil map, and the Idrisi software were used. Seven predictor variables were calculated and read along with soil classes in randomly distributed points, with sampling densities of 0.5, 1, 1.5, 2, and 4 points per hectare. Data were used to train a decision tree (Gini) and three artificial neural networks: adaptive resonance theory, fuzzy ARTMap; self‑organizing map, SOM; and multi‑layer perceptron, MLP. Estimated maps were compared with the conventional soil map to calculate omission and commission errors, overall accuracy, and quantity and allocation disagreement. The decision tree was less sensitive to sampling density and had the highest accuracy and consistence. The SOM was the less sensitive and most consistent network. The MLP had a critical minimum and showed high inconsistency, whereas fuzzy ARTMap was more sensitive and less accurate. Results indicate that sampling densities used in conventional soil surveys can serve as a reference to predict soil orders in Serra Gaúcha.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spatial dynamics of Citrus Variegated Chlorosis (CVC) was studied in a five-year old commercial orchard of 'Valencia' sweet orange (Citrus sp.) trees, located in the northern region of the state of São Paulo, Brazil. One thousand trees were assessed in 25 rows of 40 trees, planted at 8 x 5 m spacing. Disease incidence data were taken beginning in March 1994 and ending in January 1996, at intervals of four to five months. Disease aggregation was observed through the dispersion index analysis (Ib), which was calculated by dividing the area into quadrants. CVC spatial dynamics was examined using semivariogram analysis, which revealed that the disease was aggregated in the field forming foci of 10 to 14 m. For each well-fitted model, a kriging map was created to better visualize the distribution of the disease. The spherical model was the best fit for the data in this study. Kriging maps also revealed that the incidence of CVC increased in periods during which the trees underwent vegetative growth, coinciding with greater expected occurrence of insect vectors of the bacterium in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed at identifying different conditions of coffee plants after harvesting period, using data mining and spectral behavior profiles from Hyperion/EO1 sensor. The Hyperion image, with spatial resolution of 30 m, was acquired in August 28th, 2008, at the end of the coffee harvest season in the studied area. For pre-processing imaging, atmospheric and signal/noise effect corrections were carried out using Flaash and MNF (Minimum Noise Fraction Transform) algorithms, respectively. Spectral behavior profiles (38) of different coffee varieties were generated from 150 Hyperion bands. The spectral behavior profiles were analyzed by Expectation-Maximization (EM) algorithm considering 2; 3; 4 and 5 clusters. T-test with 5% of significance was used to verify the similarity among the wavelength cluster means. The results demonstrated that it is possible to separate five different clusters, which were comprised by different coffee crop conditions making possible to improve future intervention actions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The knowledge of the spatial variability of noise levels and the build of kriging maps can help the evaluation of the salubrity of environments occupied by agricultural workers. Therefore, the objective of this research was to characterize the spatial variability of the noise level generated by four agricultural machines, using geostatistics, and to verify if the values are within the limits of human comfort. The evaluated machines were: harvester, chainsaw, brushcutter and tractor. The data were collected at the height of the operator's ear and at different distances. Through the results, it was possible to verify that the use of geostatistics, by kriging technique, made it possible to define areas with different levels for the data collected. With exception of the harvester, all of machines presented noise levels above than 85 dB (A) near to the operator, demanding the use of hearing protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study about the spatial variability of data of soil resistance to penetration (RSP) was conducted at layers 0.0-0.1 m, 0.1-0.2 m and 0.2-0.3 m depth, using the statistical methods in univariate forms, i.e., using traditional geostatistics, forming thematic maps by ordinary kriging for each layer of the study. It was analyzed the RSP in layer 0.2-0.3 m depth through a spatial linear model (SLM), which considered the layers 0.0-0.1 m and 0.1-0.2 m in depth as covariable, obtaining an estimation model and a thematic map by universal kriging. The thematic maps of the RSP at layer 0.2-0.3 m depth, constructed by both methods, were compared using measures of accuracy obtained from the construction of the matrix of errors and confusion matrix. There are similarities between the thematic maps. All maps showed that the RSP is higher in the north region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C) 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Taking into account that the sampling intensity of soil attributes is a determining factor for applying of concepts of precision agriculture, this study aims to determine the spatial distribution pattern of soil attributes and corn yield at four soil sampling intensities and verify how sampling intensity affects cause-effect relationship between soil attributes and corn yield. A 100-referenced point sample grid was imposed on the experimental site. Thus, each sampling cell encompassed an area of 45 m² and was composed of five 10-m long crop rows, where referenced points were considered the center of the cell. Samples were taken from at 0 to 0.1 m and 0.1 to 0.2 m depths. Soil chemical attributes and clay content were evaluated. Sampling intensities were established by initial 100-point sampling, resulting data sets of 100; 75; 50 and 25 points. The data were submitted to descriptive statistical and geostatistics analyses. The best sampling intensity to know the spatial distribution pattern was dependent on the soil attribute being studied. The attributes P and K+ content showed higher spatial variability; while the clay content, Ca2+, Mg2+ and base saturation values (V) showed lesser spatial variability. The spatial distribution pattern of clay content and V at the 100-point sampling were the ones which best explained the spatial distribution pattern of corn yield.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The air dry-bulb temperature (t db),as well as the black globe humidity index (BGHI), exert great influence on the development of broiler chickens during their heating phase. Therefore, the aim of this study was to analyze the structure and the magnitude of the t db and BGHI spatial variability, using geostatistics tools such as semivariogram analysis and also producing kriging maps. The experiment was conducted in the west mesoregion of the states of Minas Gerais in 2010, in a commercial broiler house with heating system consisting of two furnaces that heat the air indirectly, in the firsts 14 days of the birds' life. The data were registered at intervals of five minutes in the period from 8 a.m. to 10 a.m. The variables were evaluated by variograms fitted by residual maximum likelihood (REML) testing the Spherical and Exponential models. Kriging maps were generated based on the best model used to fit the variogram. It was possible to characterize the variability of the t db and BGHI, which allowed observing the spatial dependence by using geostatistics techniques. In addition, the use of geostatistics and distribution maps made possible to identify problems in the heating system in regions inside the broiler house that may harm the development of chicks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research aims at studying spatial autocorrelation of Landsat/TM based on normalized difference vegetation index (NDVI) and green vegetation index (GVI) of soybean of the western region of the State of Paraná. The images were collected during the 2004/2005 crop season. The data were grouped into five vegetation index classes of equal amplitude, to create a temporal map of soybean within the crop cycle. Moran I and Local Indicators of Spatial Autocorrelation (LISA) indices were applied to study the spatial correlation at the global and local levels, respectively. According to these indices, it was possible to understand the municipality-based profiles of tillage as well as to identify different sowing periods, providing important information to producers who use soybean yield data in their planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the advent of mechanized farming and intensive use of agricultural machinery and implements on the properties, the soil began to receive greater load of machinery traffic, which can cause increased soil compaction. The aim of this study was to evaluate the spatial variability of soil mechanical resistance to penetration (RP) in the layers of 0.00-0.10, 0.10-0.20, 0.20-0.30 and 0.30-0.40m, using geostatistics in an area cultivated with mango in Haplic Vertisol of the northeastern semi-arid, with mobile unit equipped with electronic penetrometer. The RP data was collected in 56 points from an area of 3 ha, and random soil samples were collected to determine the soil moisture and texture. For RP data analysis we used descriptive statistics and geostatistics. The soil mechanical resistance to penetration presented increased variability, with adjustment of the spherical and exponential semivariograms in the layers. We found that 42% of the area in the layer of 0.10-0.20m showed RP values above 2.70 MPa. Maximum values of RP were found in the layer of 0.19-0.27m, predominantly in 56% of the area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clustering soil and crop data can be used as a basis for the definition of management zones because the data are grouped into clusters based on the similar interaction of these variables. Therefore, the objective of this study was to identify management zones using fuzzy c-means clustering analysis based on the spatial and temporal variability of soil attributes and corn yield. The study site (18 by 250-m in size) was located in Jaboticabal, São Paulo/Brazil. Corn yield was measured in one hundred 4.5 by 10-m cells along four parallel transects (25 observations per transect) over five growing seasons between 2001 and 2010. Soil chemical and physical attributes were measured. SAS procedure MIXED was used to identify which variable(s) most influenced the spatial variability of corn yield over the five study years. Basis saturation (BS) was the variable that better related to corn yield, thus, semivariograms models were fitted for BS and corn yield and then, data values were krigged. Management Zone Analyst software was used to carry out the fuzzy c-means clustering algorithm. The optimum number of management zones can change over time, as well as the degree of agreement between the BS and corn yield management zone maps. Thus, it is very important take into account the temporal variability of crop yield and soil attributes to delineate management zones accurately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examined the relationships between environmental variations in lotic ecosystems with the seasonal dynamics of macroalgae communities at different spatial scales: drainage basin of two rivers (Rio das Pedras and Rio Marrecas), shading (open and shaded stream segments), mesohabitat (riffles and pools), and microhabitats. Data collections were made on a monthly basis between January and December/2007. A total of 16 taxa were encountered (13 species and 3 vegetative groups). All of the biotic parameters (richness, abundance, diversity, equitability, and dominance) were found to be highly variable at all of the spatial scales evaluated. On the other hand, abiotic variables demonstrated differences only at mesohabitat (in terms of current velocity) and shaded habitat (in terms of irradiance) scales. The seasonality of the macroalgae community structure was strongly influenced by microhabitat variables (current velocity, substrate H', and irradiance), demonstrating their importance over time and at different scales. Regional variables (temperature, oxygen saturation, specific conductance, pH, and turbidity) were found to have little influence on the temporal dynamics of the macroalgae communities evaluated.