58 resultados para Sequential Gaussian Simulation
Resumo:
An axisymmetric supersonic flow of rarefied gas past a finite cylinder was calculated applying the direct simulation Monte Carlo method. The drag force, the coefficients of pressure, of skin friction, and of heat transfer, the fields of density, of temperature, and of velocity were calculated as function of the Reynolds number for a fixed Mach number. The variation of the Reynolds number is related to the variation of the Knudsen number, which characterizes the gas rarefaction. The present results show that all quantities in the transition regime (Knudsen number is about the unity) are significantly different from those in the hydrodynamic regime, when the Knudsen number is small.
Resumo:
In this work it is presented a systematic procedure for constructing the solution of a large class of nonlinear conduction heat transfer problems through the minimization of quadratic functionals like the ones usually employed for linear descriptions. The proposed procedure gives rise to an efficient and easy way for carrying out numerical simulations of nonlinear heat transfer problems by means of finite elements. To illustrate the procedure a particular problem is simulated by means of a finite element approximation.
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180º out of phase.
Resumo:
The present work shows how thick boundary layers can be produced in a short wind tunnel with a view to simulate atmospheric flows. Several types of thickening devices are analysed. The experimental assessment of the devices was conducted by considering integral properties of the flow and the spectra: skin-friction, mean velocity profiles in inner and outer co-ordinates and longitudinal turbulence. Designs based on screens, elliptic wedge generators, and cylindrical rod generators are analysed. The paper describes in detail the experimental arrangement, including the features of the wind tunnel and of the instrumentation. The results are compared with experimental data published by other authors and with naturally developed flows.
Resumo:
In this paper we present a study of feasibility by using Cassino Parallel Manipulator (CaPaMan) as an earthquake simulator. We propose a suitable formulation to simulate the frequency, amplitude and acceleration magnitude of seismic motion by means of the movable platform motion by giving a suitable input motion. In this paper we have reported numerical simulations that simulate the three principal earthquake types for a seismic motion: one at the epicenter (having a vertical motion), another far from the epicenter (with the motion on a horizontal plane), and a combined general motion (with a vertical and horizontal motion).
Resumo:
This work present the application of a computer package for generating of projection data for neutron computerized tomography, and in second part, discusses an application of neutron tomography, using the projection data obtained by Monte Carlo technique, for the detection and localization of light materials such as those containing hydrogen, concealed by heavy materials such as iron and lead. For tomographic reconstructions of the samples simulated use was made of only six equal projection angles distributed between 0º and 180º, with reconstruction making use of an algorithm (ARIEM), based on the principle of maximum entropy. With the neutron tomography it was possible to detect and locate polyethylene and water hidden by lead and iron (with 1cm-thick). Thus, it is demonstrated that thermal neutrons tomography is a viable test method which can provide important interior information about test components, so, extremely useful in routine industrial applications.
Resumo:
This paper concerns the development of drives that use electromechanical rotative motor systems. It is proposed an experimental drive test structure integrated to simulation softwares. The objective of this work is to show that an affordable model validation procedure can be obtained by combining a precision data acquisition with well tuned state-of-the-art simulation packages. This is required for fitting, in the best way, a drive to its load or, inversely, to adapt loads to given drive characteristics.
Resumo:
Tank mixtures among herbicides of different action mechanisms might increase weed control spectrum and may be an important strategy for preventing the development of resistance in RR soybean. However, little is known about the effects of these herbicide combinations on soybean plants. Hence, two experiments were carried out aiming at evaluating the selectivity of glyphosate mixtures with other active ingredients applied in postemergence to RR soybean. The first application was carried out at V1 to V2 soybean stage and the second at V3 to V4 (15 days after the first one). For experiment I, treatments (rates in g ha-1) evaluated were composed by two sequential applications: the first one with glyphosate (720) in tank mixtures with cloransulam (30.24), fomesafen (125), lactofen (72), chlorimuron (12.5), flumiclorac (30), bentazon (480) and imazethapyr (80); the second application consisted of isolated glyphosate (480). In experiment II, treatments also consisted of two sequential applications, but tank mixtures as described above were applied as the second application. The first one in this experiment consisted of isolated glyphosate (720). For both experiments, sequential applications of glyphosate alone at 720/480, 960/480, 1200/480 and 960/720 (Expt. I) or 720/480, 720/720, 720/960 and 720/1200 (Expt. II) were used as control treatments. Applications of glyphosate tank mixtures with other herbicides are more selective to RR soybean when applied at younger stages whereas applications at later stages might cause yield losses, especially when glyphosate is mixed with lactofen and bentazon.
Resumo:
Microbial pathogens such as bacillus Calmette-Guérin (BCG) induce the activation of macrophages. Activated macrophages can be characterized by the increased production of reactive oxygen and nitrogen metabolites, generated via NADPH oxidase and inducible nitric oxide synthase, respectively, and by the increased expression of major histocompatibility complex class II molecules (MHC II). Multiple microassays have been developed to measure these parameters. Usually each assay requires 2-5 x 10(5) cells per well. In some experimental conditions the number of cells is the limiting factor for the phenotypic characterization of macrophages. Here we describe a method whereby this limitation can be circumvented. Using a single 96-well microassay and a very small number of peritoneal cells obtained from C3H/HePas mice, containing as little as <=2 x 10(5) macrophages per well, we determined sequentially the oxidative burst (H2O2), nitric oxide production and MHC II (IAk) expression of BCG-activated macrophages. More specifically, with 100 µl of cell suspension it was possible to quantify H2O2 release and nitric oxide production after 1 and 48 h, respectively, and IAk expression after 48 h of cell culture. In addition, this microassay is easy to perform, highly reproducible and more economical.
Resumo:
The purpose of the present study was to explore the usefulness of the Mexican sequential organ failure assessment (MEXSOFA) score for assessing the risk of mortality for critically ill patients in the ICU. A total of 232 consecutive patients admitted to an ICU were included in the study. The MEXSOFA was calculated using the original SOFA scoring system with two modifications: the PaO2/FiO2 ratio was replaced with the SpO2/FiO2 ratio, and the evaluation of neurologic dysfunction was excluded. The ICU mortality rate was 20.2%. Patients with an initial MEXSOFA score of 9 points or less calculated during the first 24 h after admission to the ICU had a mortality rate of 14.8%, while those with an initial MEXSOFA score of 10 points or more had a mortality rate of 40%. The MEXSOFA score at 48 h was also associated with mortality: patients with a score of 9 points or less had a mortality rate of 14.1%, while those with a score of 10 points or more had a mortality rate of 50%. In a multivariate analysis, only the MEXSOFA score at 48 h was an independent predictor for in-ICU death with an OR = 1.35 (95%CI = 1.14-1.59, P < 0.001). The SOFA and MEXSOFA scores calculated 24 h after admission to the ICU demonstrated a good level of discrimination for predicting the in-ICU mortality risk in critically ill patients. The MEXSOFA score at 48 h was an independent predictor of death; with each 1-point increase, the odds of death increased by 35%.
Resumo:
Although radical nephrectomy alone is widely accepted as the standard of care in localized treatment for renal cell carcinoma (RCC), it is not sufficient for the treatment of metastatic RCC (mRCC), which invariably leads to an unfavorable outcome despite the use of multiple therapies. Currently, sequential targeted agents are recommended for the management of mRCC, but the optimal drug sequence is still debated. This case was a 57-year-old man with clear-cell mRCC who received multiple therapies following his first operation in 2003 and has survived for over 10 years with a satisfactory quality of life. The treatments given included several surgeries, immunotherapy, and sequentially administered sorafenib, sunitinib, and everolimus regimens. In the course of mRCC treatment, well-planned surgeries, effective sequential targeted therapies and close follow-up are all of great importance for optimal management and a satisfactory outcome.
Resumo:
This study evaluated the influence of packaging and labeling attributes of sugarcane spirit on consumers' behavior by applying the results of conjoint analysis in sugarcane spirit market share simulation. Firstly, a conjoint analysis was performed aiming to estimate the part-worths of each consumer for some sugarcane spirit packaging and labeling attributes. These part-worths were used in the market share simulation using the maximum utility model. It was observed that some packaging and labeling attributes affected consumer's purchase intention and that most consumers showed a similar preference pattern regarding these attributes. These consumers showed preference for the Seleta brand, which was bottled in 700 mL clear glass bottles with a metal screw cap that bore a label illustration unrelated to sugarcane spirit production process and had the information "aged 36 months in oak barrels". This study also showed that conjoint analysis and the use of its results in the market share simulation proved important tools to better understand consumer behavior towards intention to purchase sugarcane spirit.
Resumo:
Significant initiatives exist within the global food market to search for new, alternative protein sources with better technological, functional, and nutritional properties. Lima bean (Phaseolus lunatus L.) protein isolate was hydrolyzed using a sequential pepsin-pancreatin enzymatic system. Hydrolysis was performed to produce limited (LH) and extensive hydrolysate (EH), each with different degrees of hydrolysis (DH). The effects of hydrolysis were evaluated in vitro in both hydrolysates based on structural, functional and bioactive properties. Structural properties analyzed by electrophoretic profile indicated that LH showed residual structures very similar to protein isolate (PI), although composed of mixtures of polypeptides that increased hydrophobic surface and denaturation temperature. Functionality of LH was associated with amino acid composition and hydrophobic/hydrophilic balance, which increased solubility at values close to the isoelectric point. Foaming and emulsifying activity index values were also higher than those of PI. EH showed a structure composed of mixtures of polypeptides and peptides of low molecular weight, whose intrinsic hydrophobicity and amino acid profile values were associated with antioxidant capacity, as well as inhibiting angiotensin-converting enzyme. The results obtained indicated the potential of Phaseolus lunatus hydrolysates to be incorporated into foods to improve techno-functional properties and impart bioactive properties.