89 resultados para Seed adulteration and inspection
Resumo:
Jamun (Syzygium cumini L. Skeels) (Black plum, Damson plum) fruits weigh between 2-5 g at maturity. Fresh seeds represented 20-80% of the total fruit weight; the seed coat and cotyledons contributed 6% and 94% to the total seed weight respectively, while the weight of the embryonic axis was insignificant. Only the embryonic axis stained with Tetrazolium, not the cotyledons. The seeds are polyembryonic with up to four embryos, of which at most three germinate. Decoated seeds germinated faster than coated seeds under nursery conditions, with high significant germination percentages, dry matter production rates and vigor indices. The lack of staining of the cotyledon by tetrazolium was probably due to the presence of an impermeable layer. Decoating seeds for faster germination is recommended.
Resumo:
Bread-making quality is one of the most important targets in the genetic improvement of wheat. Although extensive analyses of quality traits such as farinography, sodium dodecyl sulfate (SDS) sedimentation, alveography, and baking are made in breeding programs, these analyses require high amounts of seeds which are obtained only in late generations. In this experiment the statistical correlations between the high molecular weight subunit of glutenin and bread-making quality measured by alveograph, farinograph and SDS sedimentation were evaluated. Seventeen wheat genotypes were grown under the same conditions, each producing about 1 kg of seeds for the evaluations. The high molecular weight (HMW) glutenin subunits were analyzed by SDS-PAGE. Statistical correlations were highly significant between HMW glutenin subunits and alveograph and SDS sedimentation. These results indicate the possibility of manipulating major genes for wheat seed quality by coupling traditional breeding with non-destructive single seed analysis. Only half seed is necessary to perform the SDS-PAGE analysis. Therefore, the other half seed can be planted to generate the progeny. Seed yield and SDS sedimentation were statistically correlated, indicating the possibility of simultaneous selection for both traits
Resumo:
The objective of this work was to evaluate the influence of diets containing different lipid sources on eggs quality during refrigerated storage, on yolk fatty acid composition, and on cholesterol in the yolk. Four diets were used containing Soy Oil (SO), Sunflower Seed (SS), and Meat and Bone Meal + Soy Oil (MBM + SO) or Meat and Bone Meal + Tallow (MBM + TA). The experiment followed a factorial design 4 × 3 with four dietary treatments and three storage times. The eggs were stored at 4 °C for 0, 30, and 60 days. The collected eggs were analyzed for egg weight loss, Haugh units, yolk moisture, yolk lipid oxidation, and cooked yolk firmness. Refrigerated storage reduced Haugh units, and increased yolk moisture. Sixty days of storage time reduced the firmness of hard-cooked yolk. There was an interaction between dietary treatment and storage time for egg weight loss and lipid oxidation. With regard to yolk fatty acid profile, MBM + TA diet increased the contents of palmitic and palmitoleic acids. The levels of oleic and arachidonic acids were higher in yolks from birds fed with SS diet. Linoleic acid level was higher in the yolk from treatment with SO diet. Diets containing MBM + SO induced higher levels of docosahexaenoic acid. Yolk cholesterol content was reduced with the inclusion of SS in the diet. Therefore, the type of lipid present in the diet and refrigerated storage for 60 days at 4 °C can affect the egg quality.
Resumo:
This study assessed the antioxidant, total phenolic, and physicochemical properties of in vitro Terminalia Catappa Linn (locally called castanhola) using the DPPH assay. The castanhola fruits had an average weight of 19.60 ± 0.00 g, combining shell, pulp, and seed weight, and a soluble solids content of 8 °Brix. The chemical composition was determined with predominance of carbohydrates (76,88 ± 0,58%).The titration method was used to determine Vitamin C content using 2,6-dichlorophenolindophenol (DCFI), known as reactive Tillmans resulting in no significant levels. Aqueous extracts of castanhola pulp showed a higher concentration of phenolics, 244.33 ± 18.86 GAE.g-1 of fruit, and alcoholic extracts, 142.84 ± 2.09 GAE.g-1 of fruit. EC50 values of the aqueous extract showed a greater ability to scavenge free radicals than the alcoholic extracts. The fruit had a significant content of phenolic compounds and high antioxidant capacity.
Resumo:
The objective of this study was to evaluate the effect of harvest at different times of day on the chemical and physical characteristics of vegetable-type soybean BRS 267 cultivar, harvested at the R6 stage (seed development) and to compare it with that on the grains harvested at the R8 stage (maturation). The pods of the BRS 267 cultivar were harvested at the R6 stage (at 8:00 AM, 12:00 AM, and 6:00 PM), the color parameters were evaluated, and the grains were analyzed for chemical composition, activity inhibitor trypsin, phytic acid content, starch, sugars, fatty acids, and isoflavones. No differences were observed among the different harvest times in terms of the chemical constituents of vegetable-type soybean BRS 267 cultivar harvested at the R6 stage. Isoflavones content did not change with different harvest times, and the aglycone forms (daidzein, glycitein, and genistein) were found in smaller quantities at the R6 stage compared to the R8 stage. The color of the pods of soybean BRS 267 cultivar, harvested at the R6 stage did not change with different harvest times. The grains harvested at the R6 stage had lower protein content, phytic acid, and sucrose and higher levels of lipids, carbohydrates, starch, glucose, fructose, stachyose, and linolenic acids than those collected at the R8 stage. The different times of harvest did not affect the quality of the vegetable-type soybean BRS 267 cultivar harvested at stage R6. Nevertheless, it is recommended to harvest in the morning, when the temperature is milder, like other vegetables, to facilitate and optimize its marketing and in natura consumption.
Resumo:
Acerola is a fruit that can be consumed in the form of juice and pulp. However, during its processing, a large amount of waste is generated (seed and bagasse). Adding value to these by-products is of great interest, since their use can enrich foods with nutrients and fiber. In this study, we performed phytochemical screening, determined the proximate and mineral composition, bioactive compounds and the technological functional properties of acerola seed flour and acerola bagasse flour. Seeds were dried in a ventilated oven at ± 45 °C and the bagasse was lyophilized. Samples were ground, stored in flasks protected from light. Phytochemical screening revealed metabolites of nutritional and pharmacological interest and no potentially toxic substances in the flours. Seed flour and bagasse flour showed high levels (g 100 g- 1 of dry matter - DM) of soluble fiber: 4.76 and 8.74; insoluble fiber: 75.76 and 28.58, and phenolic compounds: 4.73 and 10.82, respectively. The flours also showed high absorption of water, oil and emulsion stability, presenting potential for inclusion in meat products and bakery products.
Resumo:
Considering that annatto seeds are rich in protein, the present work aimed to evaluate the biological quality of this nutrient in the meal residue originating from annatto seed processing. We determined the general composition, mineral levels, amino acid composition and chemical scores, antinutritional factors, and protein quality using biological assays. The following values were obtained: 11.50% protein, 6.74% moisture, 5.22% ash, 2.22% lipids, 42.19% total carbohydrates and 28.45% fiber. The residue proved to be a food rich in fiber and also a protein source. Antinutritional factors were not detected. The most abundant amino acids were lysine, phenylalanine + tyrosine, leucine and isoleucine. Valine was the most limiting amino acid (chemical score 0.22). The protein quality of the seed residue and the isolated protein showed no significant differences. The biological value was lower than that of the control protein but higher than that found in other vegetables. Among the biochemical analyses, only creatinine level was decreased in the two test groups compared to the control group. Enzyme tests did not indicate liver toxicity. The results showed favorable aspects for the use of annatto seed residue in the human diet, meriting further research.
Resumo:
Due to changing cropping practices in perennial grass seed crops in western Oregon, USA, alternative rotation systems are being considered to reduce weed infestations. Information is generally lacking regarding the effects of alternative agronomic operations and herbicide inputs on soil weed seed bank composition during this transition. Six crop rotation systems were imposed in 1992 on a field that had historically produced monoculture perennial ryegrass (Lolium perenne L.) seeds. Each system plot was 20 x 30 m, arranged in a randomized complete block design, replicated four times. Twenty to thirty soil cores were sampled in June 1997 from each plot. The weed species composition of the cores was determined by successive greenhouse grow-out assays. In addition to seed density, heterogeneity indices for species evenness, richness, and diversity were determined. The most abundant species were Juncus bufonius L. and Poa annua L. Changes in seed bank composition were due to the different herbicides used for the rotation crop components. Compared to the other rotation systems, no-tillage, spring-planted wheat (Triticum aestivum L.) and oat (Avena sativa L.) reduced overall weed seed density and richness, but did not affect weed species evenness or diversity. When meadowfoam (Limnanthes alba Hartweg ex Benth.) succeeded wheat in rotation, weed species richness was unaffected, but evenness and diversity were reduced, compared to the other rotation systems. For meadowfoam in sequence after white clover (Trifolium repens L.), crop establishment method (no-tillage and conventional tillage) had no effect on weed seed species density, evenness, or diversity.
Resumo:
To evaluate the effectiveness of gibberellic acid (GA3) in breaking rice seed dormancy and the use of alpha-amylase enzyme activity as an indicator of the dormancy level, seed from the intensively dormant irrigated cultivar Urucuia were used. The seeds were submitted to a pre-drying process in a forced air circulation chamber under 40ºC during 7 days and submersed in 30 mL of GA3 solution under 0, 10, 30 and 60 mg/L H2O concentrations, during 2, 24 and 36 hours. After the treatments, the alpha-amylase activity was determined by using the polyacrilamide electrophoresis and spectrophotometry. At the same time, the germination test was made. The results indicated a gain in germination and in alpha-amylase activity in higher concentrations and soaking time of seeds in GA3. These observations support the conclusion that soaking seed in 60 mg GA3/L during 36 hours can be used as a quick and efficient treatment in breaking rice seed dormancy and is equivalent to the forced air circulation chamber at 40ºC during 7 days. The alpha-amylase enzyme activity proved to be as an efficient marker of the seeds dormancy level.
Resumo:
This research aimed to determine the soil seed bank and its relationship with environmental factors that have an influence in the distribution of the vegetation above the ground in an excluded area of natural grassland in the South of Brazil. Most of the 122 identified species in the seed bank were perennials. Data analysis indicated three distinct community groups, according to the size and composition of the soil seed bank in lowlands with permanent wet soils, in lowlands and in other areas. In general, lowlands were characterized by low-fertility soils, high moisture and aluminum contents, being spatially homogeneous habitats and, therefore, more restricted to vegetation heterogeneity than other parts of the relief. Environmental factors most associated with soil seed bank size and composition were relief position and their co-related soil variables such as: soil moisture content, potassium content, organic matter, basic saturation of cation exchange soil capacity, exchangeable basics sum of the soil and clay soil content. According to that, relief position, associated with combined effects of soil chemical properties related to it, determines the observed variation pattern of the soil seed bank, as a reflection of the vegetation above the area.
Resumo:
Excess salts in the root zone inhibit water uptake by plants, affect nutrient uptake and may result in toxicities due to individual salts in the soil solution. Excess exchangeable sodium in the soil may destroy the soil structure to a point where water penetration and root aeration become impossible. Sodium is also toxic to many plants. Beans (Phaseolus vulgaris L.) are consumed as protein source in northeastern Brazil, although little is known about common bean cultivar tolerance to salinity. The germination of bean cultivars under salt stress was studied. The cultivars 'Carioca' and 'Mulatinho' were submitted to germination test in a germinator at 25ºC, at the Seed Analysis Laboratory of the Brazilian Agricultural Research Corporation unit in the Semi- Arid region (Embrapa Semi Árido), Petrolina, Pernambuco State. These seeds were germinated on "germitest" papers imbibed in distilled water or in 10, 50, 100 e 200 mol.m-3sodium chloride (NaCl) solutions. At the first and second counts of the germination test, normal seedlings were counted, measured, weighed and dried, supplying data for vigor, total germination, fresh matter weight and dry matter weight and seedlings length. Total protein was quantified in cotyledons at 3, 6 and 9 days after sowing. The results indicated that the NaCl content influenced seed germination and concentrations above 50 mol.m-3 decreased germination and seedling growth.
Resumo:
The objective of this study was to verify the effect of drying on germination of cupuassu (Theobroma grandiflorum (Willd. ex Spreng) K. Schum.) seeds. Desiccation was in forced air oven, with temperature ranging from 23 to 33ºC. Sowing was carried out at 0.5cm of depth in plastic trays in sand and sawdust mixture (1:1), previously sterilized in hot water (100ºC), during 2h. Seeds were left to germinate in a laboratory with no temperature and relative humidity control, under natural light. It was quantified the seed moisture content, in four replications of 10 seeds; the germination percentage, performed during 30 days, with daily counts of the number of germinated seeds; the germination speed index; and number of days to the germination onset. The experimental design was completely randomized with four replications of 25 seeds. The reduction of moisture content from 58.6 to 37.8% did not affect seed germination and germination speed index; however, they were affected when moisture content was reduced to values below 30.7%. It was observed that only when moisture content was 16.1% seeds demanded more days to begin germination. Cupuassu seeds are classified as recalcitrant and they can be desiccated up to 37.8% with no reduction on germination.
Resumo:
Hot and dry weather conditions during soybean [Glycine max (L.) Merrill] seed maturation can cause forced maturation of the seed, resulting in the production of high levels of green seed, which may be detrimental to seed germination. These stressful conditions were imposed on soybean plants during seed maturation to investigate the production of green seeds and seed quality. Plants of the CD 206 cultivar were grown in a greenhouse until the R5.5 growing stage and then transferred to phytotrons at R6 and R7.2 for stress induction. Plants were subjected to two temperature regimes, high (28ºC to 36ºC) and normal (19ºC to 26ºC), and four soil water availability conditions, control (adequate water supply), 30% gravimetric moisture (GM), 20% GM and no water supply. Seed were harvested at R9. Green seed percentages and 100-seed weights from the lower, middle and upper thirds of each plant were determined. Seed quality was assessed by germination, tetrazolium (viability and vigor) and electrical conductivity tests. Occurrence of green seed varied from 9% to 86%, depending on the severity of the stresses imposed. High temperature, coupled with no water supply at R6, resulted in a pronounced occurrence of green seeds. There was no difference in the percentage of green seeds among the plant segments. Seed quality was negatively affected by the incidence of green seeds. A procedure for screening soybean genotypes in a phytotron for their tolerance and/or susceptibility to the production of green seeds was developed.
Resumo:
The occurrence of green seeded soybeans [Glycine max (L.) Merrill] is a problem closely related to unfavorable climatic conditions, mainly drought, that occurs during the final stages of seed maturation. This problem causes serious losses to soybean seed quality in Brazil. In these seeds, chlorophyll is not properly degraded during maturation, drastically reducing seed quality. Using the chlorophyll fluorescence technique, it is possible to remove green seeds from the seed lot, improving seed quality in several species in which the occurrence of green seeds is also a problem. The objective of this research was to study the use of the chlorophyll fluorescence technique in sorting green seeds from soybean seed samples and its effects on quality. Five seed samples of soybean, cultivar TMG 113 RR, with 0%, 5%, 10%, 15%, and 20% of green seeds were used in this study. Seeds from each sample were sorted into two fractions based on the chlorophyll fluorescence signals and then compared to the control (non-sorted seeds). The sorting process showed great differences between the low and high chlorophyll fluorescence fractions. It was concluded that: green seeds of soybeans present high chlorophyll fluorescence and that this characteristic affects the quality of the seeds; it is possible to improve the quality of soybean seed by removing green seeds using the chlorophyll fluorescence sorting technique.
Resumo:
The pearl millet seed is small and its size varies, making sowing more difficult. The pelleting technique increases and homogenizes seed size, but it is essential to determine the physical and physiological characteristics of pelleted seeds. The physiological analysis consisted of: first germination count, final germination, speed emergence index, and seedling emergence. Physical analysis consisted of determining the 1000-seed weight, 1000-seed volume and fragmentation. The control treatment did not receive any coating, and the other 36 treatments combined four binders: bentonite, polyvinyl acetate (PVA), polyvinylpyrrolidone (PVP) and methyl cellulose (Methocel®), and nine powder coating products: microcellulose, plaster, vermiculite, magnesium thermophosphate (Yoorin®), phytic acid, dicalcium phosphate, super simple phosphate (SS), monoamonic phosphate (MAP) and reactive phosphate. Among the materials used to form the pearl millet pellet, the most efficient binders were the polyvinyl acetate and the methyl cellulose, and as coaters, the vermiculite and the microcellulose.