124 resultados para SCANNING ELECTRON MICROSCOPY AND STARCH
Resumo:
Acanthocollaritrema umbilicatum Travassos, Freitas and Bührnheim, 1965, is the only species of Acanthocollaritrematidae described up to the moment. The systematic position of this species and the validity of the family has been questioned by the possible presence of a gonotyl and a genital atrium associated to the acetabulum. In this paper, specimens of this trematode, collected from Centropomus undecimalis cultivated at Itamaracá, State of Pernambuco, northeast Brazil, were studied under optical and scanning electron microscopy, and compared with available sintypes. Gonotyl and genital atrium were not observed and both family and species are considered valid taxonomic entities. A. umbilicatum is redescribed with the adition of new morphological information.
Resumo:
Mesocoelium lanfrediae sp. nov. (Digenea: Mesocoeliidae) inhabits the small intestine of Rhinella marina (Amphibia: Bufonidae) and is described here, with illustrations provided by light, scanning electron microscopy and molecular approachs. M. lanfrediae sp. nov. presents the typical characteristics of the genus, but is morphometrically and morphologically different from the species described previously. The main diagnostic characteristics of M. lanfrediae sp. nov. are (i) seven pairs of regularly-distributed spherical papillae on the oral sucker, (ii) ventral sucker outlined by four pairs of papillae distributed in a uniform pattern and interspersed with numerous spines, which are larger at the posterior margin and (iii) small, rounded tegumentary papillae around the opening of the oral sucker, which are morphologically different from those of the oral sucker itself, some of which are randomly disposed in the ventrolateral tegumentary region of the anterior third of the body. Addionally, based on SSU rDNA, a phylogenetic analysis including Brachycoeliidae and Mesocoeliidae taxa available on GenBank established the close relationship between M. lanfrediae sp. nov. and Mesocoelium sp.
Resumo:
Titanium dioxide was prepared by hydrolysis and polycondensation of titanium tetraisopropoxide. TiO2 films were obtained by spin coating of the precursor solution on ITO substractes (glass covered with indium doped tin oxide). Films were prepared using different temperatures and hydrochloric acid contents. The effect of the drying temperature of the films (100 or 400ºC) was also investigated. TiO2 films were characterized by cyclic voltammetry, chronoamperometry, ultraviolete-visible spectroscopy, scanning electron microscopy and X-ray diffractrometry.
Resumo:
Aluminum oxide was dispersed on a commercial silica gel surface, using successive grafting reactions. The reaction products were characterized by N2 adsorption-desorption isotherms, scanning electron microscopy and infrared spectroscopy. The progressive incorporation of aluminum, up to 5.5% (w/w), does not produce agglomeration of alumina, since changes in the original pore size distribution of the silica matrix were not observed. The aluminum oxide covers homogeneously the silica surface.
Resumo:
In this work, a new adsorbent was prepared by microencapsulation of sulfoxine into chitosan microspheres by the spray drying technique. The new adsorbent was characterized by Raman spectroscopy, scanning electron microscopy and microanalysis of energy dispersive X-rays. The Cu(II) adsorption was studied as a function of pH, time and concentration. The optimum pH was found to be 6.0. The kinetic and equilibrium data showed that the adsorption process followed the pseudo second-order kinetic model and the Langmuir isotherm model over the entire concentration range. An increase of 8.0% in the maximum adsorption capacity of the adsorbent (53.8 mg g-1) was observed as compared to chitosan glutaraldehyde cross-linked microspheres.
Resumo:
Activities related to nuclear industry, production of phosphoric acid and hospitals have generated considerable volumes of radioactive waste containing uranyl ions. Banana pith was characterized by Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy and was investigated as a biosorbent for uranyl ions from nitric solutions by batch experiments. Influences of adsorbent size, kinetics and equilibrium adsorption were studied. The biosorption of the uranyl ions followed pseudo-second-order kinetics. The adsorption isotherm data were closely fitted to the Freundlich equation.
Resumo:
Micro-mesoporous hybrid materials of ZSM-12/MCM-41 type with different micro- and mesoporosity contributions were prepared by a procedure that uses the desilication of the zeolite in an alkaline medium, followed by recrystallization onto the mesostructure, where the zeolite is used as the silica source in the formation of mesoporous phase. The materials were characterized by X-ray diffraction, nitrogen adsorption-desorption at 77 K, scanning electron microscopy and thermal analysis. The results showed that the methodology utilized is efficient for obtaining hybrid materials of ZSM-12/MCM-41 type with optimized micro-and mesoporosity.
Resumo:
The obtention of silica and cyclodextrin hybrid materials was accomplished by refluxing them in xylol using citric acid as a binding agent. The materials were characterized by infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, and elemental analysis. Evidence for the docking of cyclodextrins α and γ was substantiated based on the variation in band intensity for groups such as ≡Si-OH. Additional docking evidence includes the displacement of some of the bands that are related to cyclodextrin such as the deformation of the C-H axial bond. The α and γ-CDSi materials were characterized as amorphous compounds. The products obtained in the synthesis showed changes in the decomposition temperatures of their isolated constituents, in which the mass of α and γ-CD docked to the silica surface gave the estimated values of 41% and 47%, respectively. The elemental constituents were shown to be consistent and close to their relative theoretical values. Thermogravimetric analysis showed that a reduction in the percentage of the hybrids was proportional to the amount of lost mass. This new material is an improvement over synthesized organosilane materials because the operator and the environment benefit from a less toxic methodology. In addition, the material has several potential applications in complexation systems with cyclodextrin.
Resumo:
Chemically modified electrodes have been studied to obtain new and better electrochemical sensors. Transparent conductive oxides, such as fluorine-doped tin-oxide (FTO), shows electrical conductivity comparable to metals and are potential candidates for new sensors. In this work, FTO was modified by gold electrodeposition from chlorine-auric acid solution using cyclic voltammetry (CV) technique. A set of different materials were produced, varying the scan number. Scanning electron microscopy and electrochemical impedance spectroscopy were performed for the characterization of electrodes surfaces. From this analysis was possible to observe the resistive, capacitive and difusional aspects from all kind of modified electrodes produced, establishing a relationship between this parameters and the scan number. The electrode with 100 scans of CV presented better characteristics for an electrochemical sensor; it has the lowest global impedance and rising of capacitive behavior (related to electrical double layer formation) at lower frequencies. This electrode was tested for paracetamol and caffeine detection. The results showed a high specificity, decreased oxidation potential (0.58 V and 0.97 Vvs. SCE, for paracetamol and caffeine, respectively) and low detection limits (0.82 and 0.052 µmol L-1).
Resumo:
Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.
Resumo:
The surface topography and ultrastructure of the tegument of Paranaella luquei Kohn, Baptista-Farias & Cohen, 2000, a microcotylid monogenean parasite from the gills of Hypostomus regani (Ihering, 1905) (Loricariidae) was studied by scanning (SEM) and transmission electron microscopy (TEM). By SEM, it was observed that the tegument presents transversal ridges, forming folds in the ventral and dorsal surfaces and microvillous-like tegumental projections in the anterior and median regions of body. These projections were also observed by TEM. The tegument is made up of a syncytium delimited by apical and basal plasma membranes, containing inclusion bodies and mitochondria, connected to the nucleated region by means of cytoplasmatic processes. The tegumental cells present a well developed nucleus and cytoplasm containing inclusion bodies, similar to those found on the external layer, mitochondria, rough endoplasmatic reticulum and free ribossomes.
Resumo:
A pre-Columbian Peruvian scalp was examined decades ago by a researcher from the Oswaldo Cruz Foundation. Professor Olympio da Fonseca Filho described nits and adult lice attached to hair shafts and commented about the origin of head lice infestations on mankind. This same scalp was sent to our laboratory and is the subject of the present paper. Analysis showed a massive infestation with nine eggs/cm2 and an impressive number of very well preserved adult lice. The infestation age was roughly estimated as nine months before death based on the distance of nits from the hair root and the medium rate of hair growth. A small traditional textile was associated with the scalp, possibly part of the funerary belongings. Other morphological aspects visualized by low-vacuum scanning electron microscopy are also presented here for adults and nits.
Resumo:
Starches and gums are hydrocolloids frequently used in food systems to provide proper texture, moisture, and water mobility. Starch-gum interaction in food systems can change the starch granule swelling and its gelatinization and rheological properties. In this study, the effect of the addition of xanthan gum (XG), sodium carboxymethyl cellulose (SCMC), and carrageenan (CAR) at the concentrations of the 0.15, 0.25, 0.35 and 0.45% (w/v) on the pasting, thermal, and rheological properties of cassava starch was studied. The swelling power (SP) and the scanning electron microscopy (SEM) of the starch gels were also evaluated. The results obtained showed that xanthan gum (XG) had a strong interaction with the cassava starch penetrating between starch granules causing increase in pasting viscosities, SP, storage and loss (G', and G", respectively) modulus and reduction in the setback of the starch; sodium carboxymethyl cellulose (SCMC) greatly increased the pasting viscosities, the SP, and the storage and loss (G', and G", respectively) modulus of the starch-mixtures, mainly due to its greater capacity to hold water and not due to the interaction with cassava starch. Carrageenan (CAR) did not change any of the starch properties since there was no interaction between this gum and cassava starch at the concentrations used.
Resumo:
Twenty one cases of molluscum contagiosum virus disease were collected for electron microscopical and serological tests. Molluscum virus was detected in the crust, inside the vacuoles formed in the keratinocytes cells. The patients developed specific antibodies to the virus detected by complement fixation test.