47 resultados para Remote sensing, GIS, Hurricane Katrina, recovery, supervised classification, texture
Resumo:
The aim of this study was to define the photographic patterns that represent the use and occupation of the landcover of the "spring" of the Rico Stream subbasin, located at Monte Alto, state of São Paulo (SP), Brazil, for environmental adaptation regarding the Brazilian Forest Law. The mapping was performed using remote sensing techniques and visual interpretation of the World View image, followed by the digitalization of the net of drainage and vegetation (natural and agricultural) at the AutoCad software with documents and field work. The study area has 2141.53 ha and the results demonstrated that the main crop is sugarcane with 546.34 ha, followed by 251.22 ha of pastures, 191.71 ha of perennial crops, 57.31 ha of Eucalyptus and 49.52 ha of onion, confirming the advance of sugarcane culture in the region. The region has 375.04 ha of areas of permanent preservation (APPs), and of this area it was found that only 72.17 ha (19.24%) has arboreal vegetation or natural forest, and 302.87 ha of these areas need to be enriched and reforested with native vegetation from the region, according to the current legislation. The data of the area enable future proposals of models for environmental adaptation to the microbasin according to the current environmental legislation.
Resumo:
Some models have been developed using agrometeorological and remote sensing data to estimate agriculture production. However, it is expected that the use of SAR images can improve their performance. The main objective of this study was to estimate the sugarcane production using a multiple linear regression model which considers agronomic data and ALOS/PALSAR images obtained from 2007/08, 2008/09 and 2009/10 cropping seasons. The performance of models was evaluated by coefficient of determination, t-test, Willmott agreement index (d), random error and standard error. The model was able to explain 79%, 12% and 74% of the variation in the observed productions of the 2007/08, 2008/09 and 2009/10 cropping seasons, respectively. Performance of the model for the 2008/09 cropping season was poor because of the occurrence of a long period of drought in that season. When the three seasons were considered all together, the model explained 66% of the variation. Results showed that SAR-based yield prediction models can contribute and assist sugar mill technicians to improve such estimates.