49 resultados para Realistic threat
Resumo:
Drug-resistant tuberculosis (TB) is a growing global threat. Approximately 450,000 people developed multidrug-resistant TB worldwide in 2012 and an estimated 170,000 people died from the disease. This paper describes the sociodemographic, clinical-epidemiological and bacteriological aspects of TB and correlates these features with the distribution of anti-TB drug resistance. Mycobacterium tuberculosis (MT) cultures and drug susceptibility testing were performed according to the BACTEC MGIT 960 method. The results demonstrated that MT strains from individuals who received treatment for TB and people who were infected with human immunodeficiency virus were more resistant to TB drugs compared to other individuals (p < 0.05). Approximately half of the individuals received supervised treatment, but most drug-resistant cases were positive for pulmonary TB and exhibited positive acid-fast bacilli smears, which are complicating factors for TB control programs. Primary healthcare is the ideal level for early disease detection, but tertiary healthcare is the most common entry point for patients into the system. These factors require special attention from healthcare managers and professionals to effectively control and monitor the spread of TB drug-resistant cases.
Resumo:
House re-invasion by native triatomines after insecticide-based control campaigns represents a major threat for Chagas disease vector control. We conducted a longitudinal intervention study in a rural section (Area III, 407 houses) of Pampa del Indio, northeastern Argentina, and used wing geometric morphometry to compare pre-spray and post-spray (re-infestant bugs) Triatoma infestanspopulations. The community-wide spraying with pyrethroids reduced the prevalence of house infestation by T. infestans from 31.9% to < 1% during a four-year follow-up, unlike our previous studies in the neighbouring Area I. Two groups of bug collection sites differing in wing shape variables before interventions (including 221 adults from 11 domiciles) were used as a reference for assigning 44 post-spray adults. Wing shape variables from post-spray, high-density bug colonies and pre-spray groups were significantly different, suggesting that re-infestant insects had an external origin. Insects from one house differed strongly in wing shape variables from all other specimens. A further comparison between insects from both areas supported the existence of independent re-infestation processes within the same district. These results point to local heterogeneities in house re-infestation dynamics and emphasise the need to expand the geographic coverage of vector surveillance and control operations to the affected region.
Resumo:
Asymptomatic Plasmodium infection carriers represent a major threat to malaria control worldwide as they are silent natural reservoirs and do not seek medical care. There are no standard criteria for asymptomaticPlasmodium infection; therefore, its diagnosis relies on the presence of the parasite during a specific period of symptomless infection. The antiparasitic immune response can result in reducedPlasmodium sp. load with control of disease manifestations, which leads to asymptomatic infection. Both the innate and adaptive immune responses seem to play major roles in asymptomatic Plasmodiuminfection; T regulatory cell activity (through the production of interleukin-10 and transforming growth factor-β) and B-cells (with a broad antibody response) both play prominent roles. Furthermore, molecules involved in the haem detoxification pathway (such as haptoglobin and haeme oxygenase-1) and iron metabolism (ferritin and activated c-Jun N-terminal kinase) have emerged in recent years as potential biomarkers and thus are helping to unravel the immune response underlying asymptomatic Plasmodium infection. The acquisition of large data sets and the use of robust statistical tools, including network analysis, associated with well-designed malaria studies will likely help elucidate the immune mechanisms responsible for asymptomatic infection.
Resumo:
Parasitoids of the endangered leafcutter ant Atta robusta Borgmeier in urban and natural areas. Hosts of parasitoids in urban areas may suffer from a double threat of habitat destruction by urbanization and parasitism pressure. Moreover, the parasitoids themselves might be at risk if they are specialists. Here, we studied whether Atta robusta (Hymenoptera, Formicidae), which is on the red list of Brazilian threatened species, suffers from higher parasitism pressure in an urban area compared to a natural one. In addition, we determined whether their specialist parasitoids, Eibesfeldtphora breviloba and Myrmosicarius exrobusta (Diptera, Phoridae), are in risk and evaluated whether they are influenced by habitat structure, temperature, humidity, ant traffic, and time of the day. The study was carried out in an urban park and in a natural protected area in the city of Rio de Janeiro. In each site we chose an open area and a closed area (forest) and sampled nine nests in each area. We found that parasitism pressure was similar in urban and natural areas, with the same two parasitoid species present in both areas. The main difference was related to habitat structure, since M. exrobusta was mainly present in open areas while E. breviloba was almost exclusively found in closed areas. Myrmosicarius exrobusta was not present during the hottest midday times, and its abundance was negatively correlated to vapor pressure deficit. These results suggest that green areas can be an important component in efforts to conserve diversity in urban areas. However, the complexity of the habitats in those areas is a fundamental issue in designing urban parks.