112 resultados para RADIOACTIVE EFFLUENTS
Resumo:
This paper presents the study of the oxidation of three textile dyes (Remazol black B, Remazol Brilliant Orange 3R and Remazol Golden Yellow RNL) using electrochemical and photoelectrochemical methods. In both methods, electrolysis experiments were performed at a current density of 50 mA cm-2 in an aqueous solution of each dye (30 mg L-1), using a photoelectrochemical flow-cell. For all the dyes studied, the photoelectrochemical method was demonstrated to be more efficient than the electrochemical one. Photoelectrochemical oxidation resulted in complete decoloration after 90 min of electrolysis and total organic carbon (TOC) removal reached up to 36%. It was observed that the dyes presenting chromophores at higher wavelengths are removed the quickest, which indicates that photosensitised (photoassisted) oxidation occurs. The level of color was reduced to levels below the standards presented in the literature, which indicates the viability of the photoelectrochemical process as part of the treatment of textile effluents.
Resumo:
The first days of radioactivity, the discoveries of X-rays, radioactivity, of alpha- and beta- particles and gamma- radiation, of new radioactive elements, of artificial radioactivity, the neutron and positron and nuclear fission are reviewed as well as several adverse historical marks, such as the Manhattan project and some nuclear and radiological accidents. Nuclear energy generation in Brazil and the world, as an alternative to minimize environmental problems, is discussed, as are the medicinal, industrial and food applications of ionizing radiation. The text leads the reader to reflect on the subject and to consider its various aspects with scientific and technological maturity.
Resumo:
Many industrial processes produce effluents with a wide variety of xenobiotic organic pollutants, which cannot be efficiently degraded by conventional biological treatments. Thus, the development of new technologies to eliminate these refractory compounds in water has become very imperative in order to assure the quality of this important resource. Ozonation is a very promising process for the treatment of wastewaters containing non-easily removable organic compounds. The present work aims at highlighting new methods of enhancing the efficiency of ozone towards the removal organic pollutants in aqueous solution. Special attention is given to catalytic ozonation processes contemplating homo- and heterogeneous catalysis, their activity and mechanisms. Recent results and future prospects about the application of these processes to real effluents are also evaluated.
Resumo:
Removal of hydrocarbons from aqueous effluents using biosorbents was investigated. The effluent was simulated by a dispersion of gasoline (simple hydrocarbons) in water. Corn-cob, wood powder, coconut mesocarp and sugar-cane bagasse were used as adsorbents and their performance verified by means of batch experiments performed in an agitated vessel. The influence of input variables such as hydrocarbon concentration, mass of biomass and agitation level on the adsorbents' capacity was studied by means of factorial design. The results indicated that, among the materials studied, coconut mesocarp and sugar-cane bagasse can be considered promising biomasses for treating aqueous effluents contaminated by hydrocarbons.
Resumo:
There is an increasing interest in micropollutants in the environment that can interfere with the endocrine system, affecting health, growth and reproduction of animals and humans. These substances are known as Endocrine Disrupting Chemicals (EDCs) and can be found in domestic sewage, domestic wastewater treatment plant effluents, and in natural and potable waters. There are numerous chemicals classified as EDCs, such as pesticides, chemicals used and produced by chemical industries and natural and synthetic estrogens. EDCs can be related to the increase of the incidence of anomalies in the reproductive system of animals, cancer in humans and reduction of the masculine fertility.
Resumo:
Although the hypothesis that environmental chemicals may exhibit endocrine disrupting effects is not new, the issue has been a growing level of concern due to reports of increased incidences of endocrine-related disease in humans, including declining male fertility, and more significantly, to adverse physiological effects observed in wildlife where cause and effect relationships are more evident. The list of endocrine disrupting chemicals (EDCs) includes a range of anthropogenic compounds, phytoestrogens, naturally occurring sex steroids and synthetic estrogens. Within the aquatic environment, the presence of EDCs has concerned many scientists and water quality regulators. Discharge of effluents from treatment facilities is likely to be a significant source of input of contaminants to many systems, and the potential for concentration of hydrophilic compounds and transformation products within sludges has implications for their disposal. Then, understanding the processes and the fate of EDCs on the environment, as well as the mechanisms of endocrine disruption, may facilitate controlling or limiting exposure of both humans and the environment to these compounds.
Resumo:
The growing concern of environmental surveillance of the quality of hydric resources guides the development of research on management of residues generated in water treatment plants (WTP). Approximately 8.000 WTPs in Brazil operate without a treatment program of the residues, disposing these effluents in the environment. This work evaluated WTP discharges into watercourses by collecting superficial waters, sediments and benthic samples at the town of Registro, São Paulo State, Brazil. Even though superficial waters and benthic samples showed no further contamination, sediment analysis pointed out that aluminum deposits detected near sludge discharges may represent a potential risk to the environment.
Resumo:
The aim of this work is to obtain, purify and characterize biochemically a peroxidase from Copaifera langsdorffii leaves (COP). COP was obtained by acetone precipitation followed by ion-exchange chromatography. Purification yielded 3.5% of peroxidase with the purification factor of 46.86. The COP optimum pH is 6.0 and the temperature is 35 ºC. COP was stable in the pH range of 4.5 to 9.3 and at temperatures below 50.0 ºC. The apparent Michaelis-Menten constants (Km) for guaiacol and H2O2 were 0.04 mM and 0.39 mM respectively. Enzyme turnover was 0.075 s-1 for guaiacol and 0.28 s-1 for hydrogen peroxide. Copaifera langsdorffii leaves showed to be a rich source of active peroxidase (COP) during the whole year. COP could replace HRP, the most used peroxidase, in analytical determinations and treatment of industrial effluents at low cost.
Resumo:
Tannery effluents are very dangerous for the environment since they contain large amounts of dangerous and biorecalcitrant contaminants (organic matter and Cr(VI)). This paper reports the efficiency of heterogeneous photocatalysis, based on the application of solar and artificial radiation, furnished by UV lamps, using TiO2 fixed on a flat plate, in the treatment of synthetic effluents. The results of COD and Cr(VI) demonstrate that the use of solar radiation is the most efficient way to perform the photocatalytic treatment of these effluents since a minimum removal of 62 and 61% was observed for Cr(VI) and organic matter, respectively.
Resumo:
Green coconut shells were treated with acid, base and hydrogen peroxide solutions for 3, 6, 12 and 24 h for removing toxic metals from synthetic wastewater. The removal of ions by the adsorbent treated with 0.1 mol L-1 NaOH/ 3h was 99.5% for Pb2+ and 97.9% for Cu2+. The removal of Cd2+, Ni2+, Zn2+, using adsorbent treated with 1.0 mol L-1 NaOH/3 h, was 98.5, 90.3 and 95.4%, respectively. Particle size, adsorbent concentration and adsorption kinetics were also studied. An adsorbent size of 60-99 mesh and a concentration of 30-40 g/L for 5 min exposure were satisfactory for maximum uptake of Pb2+, Ni2+, Cd2+, Zn2+ and Cu2+ and can be considered as promising parameters for treatment the aqueous effluents contaminated with toxic metals.
Resumo:
The employment of local soils for extraction of metallic elements was evaluated through batch tests to treat wastewaters generated in a petroleum refinery plant in southern Brazil. Clay and organic carbon content and clay mineralogy provide these soils, in principle, with moderate metal retention capacity. The following retention order was established: Cr3+ > Pb2+ > Cu2+ > Hg2+ > Cd2+, with total amount of metals retained varying from 36 to 65 meq kg-1. The results show the high efficiency of local soils for extracting metals from liquid effluents through sorption and precipitation processes under acid pH conditions.
Resumo:
This paper evaluates the occurrence of nitrate and ammonium in the Barreiras aquifer in the metropolitan area of Belém, Pará State, Brazil. The results show that some wells display ammonium and nitrate concentrations above or close to the limits of water potability regulations. The main cause of the pollution of these waters is related the local disposal of domestic effluents and/or leakage from pipes of old sewage systems.
Resumo:
Ozonation tests with and without prior filtration by means of a 50 micron mesh cartridge filter were conducted with primary sanitary effluents. Filtration led to increased inactivation efficiencies with regard to total and thermotolerant coliforms but it did not seem to influence heterotrophic plate count (HPC) bacteria inactivation efficiencies significantly. Application of the Chick-Watson model to experimental data obtained in the situation of constant inactivation showed that the ozone dosage was more important to bacterial inactivation than the contact time with regard to the cases of thermotolerant coliform inactivation in filtered samples and HPC bacteria and total coliform inactivation in non-filtered samples.
Resumo:
The aim of this work is to evaluate the use of natural zeolites to remove the NH4+ that remains in effluents from swine facilities which were submitted to physico-chemical and biological treatments. Experiments were made in batch made adding 5% (w/w) of adsorbent (0.6-1.3 and 3.0-8.0 mm) to synthetic and real swine facilities effluents. The results show that ammonium removal is influenced by adsorbent particle size and the presence of other ions in the effluent. The adsorption equilibrium was described by Langmuir as well as Freundlich isotherms and the kinetic data fitted well a pseudo-second order model.
Resumo:
On a laboratory scale effluents were produced from bichromic dyeing of acrylic fabrics with the basic dyes Blue Astrazon FGGL 300% and Yellow Gold Astrazon GL 200%. The residual dyeing baths were subjected to a photoelectrochemical treatment and reused in a second dyeing process. In the reutilization study, dyeings with treated effluent were compared with standard dyeings with distilled water. The results of dyeings using 100% of treated effluent were unsatisfactory, but the substitution of 10 to 30% of the treated effluent by distilled water resulted in reduced and more acceptable values for difference in colour intensity (ΔE) between 1.86 and 0.3.