57 resultados para Quality Regulation by Consumer Self—help
Resumo:
The histone-like protein H1 (H-NS) is an abundant structural component of the bacterial nucleoid and influences many cellular processes including recombination, transcription and transposition. Mutations in the hns gene encoding H-NS are highly pleiotropic, affecting the expression of many unrelated genes. We have studied the role of H-NS on the regulation of hemolysin gene expression in Serratia marcescens. The Escherichia coli hns mutant carrying S. marcescens hemolysin genes on a plasmid constructed by ligation of the 3.2-kb HindIII-SacI fragment of pR02 into pBluescriptIIKS, showed a high level of expression of this hemolytic factor. To determine the osmoregulation of wild-type and hns defective mutants the cells were grown to mid-logarithmic phase in LB medium with 0.06 or 0.3 M NaCl containing ampicillin and kanamycin, whereas to analyze the effect of pH on hemolysin expression, the cells were grown to late-logarithmic phase in LB medium buffered with 0.1 M Tris-HCl, pH 4.5 to 8.0. To assay growth phase-related hemolysin production, bacterial cells were grown in LB medium supplemented with ampicillin and kanamycin. The expression of S. marcescens hemolysin genes in wild-type E. coli and in an hns-defective derivative at different pH and during different growth phases indicated that, in the absence of H-NS, the expression of hemolysin did not vary with pH changes or growth phases. Furthermore, the data suggest that H-NS may play an important role in the regulation of hemolysin expression in S. marcescens and its effect may be due to changes in DNA topology influencing transcription and thus the amount of hemolysin expression. Implications for the mechanism by which H-NS influences gene expression are discussed.
Resumo:
The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.
Resumo:
This review focuses on the mechanisms of DNA methylation, DNA methylation pattern formation and their involvement in gene regulation. Association of DNA methylation with imprinting, embryonic development and human diseases is discussed. Furthermore, besides considering changes in DNA methylation as mechanisms of disease, the role of epigenetics in general and DNA methylation in particular in transgenerational carcinogenesis, in memory formation and behavior establishment are brought about as mechanisms based on the cellular memory of gene expression patterns.
Resumo:
The interaction between H+ extrusion via H+-ATPase and Cl- conductance was studied in the C11 clone of MDCK cells, akin to the intercalated cells of the collecting duct. Cell pH (pHi) was measured by fluorescence microscopy using the fluorescein-derived probe BCECF-AM. Control recovery rate measured after a 20 mM NH4Cl acid pulse was 0.136 ± 0.008 pH units/min (dpHi/dt) in Na+ Ringer and 0.032 ± 0.003 in the absence of Na+ (0 Na+). With 0 Na+ plus the Cl- channel inhibitor NPPB (10 µM), recovery was reduced to 0.014 ± 0.001 dpHi/dt. 8-Br-cAMP, known to activate CFTR Cl- channels, increased dpHi/dt in 0 Na+ to 0.061 ± 0.009 and also in the presence of 46 nM concanamycin and 50 µM Schering 28080. Since it is thought that the Cl- dependence of H+-ATPase might be due to its electrogenic nature and the establishment of a +PD (potential difference) across the cell membrane, the effect of 10 µM valinomycin at high (100 mM) K+ was tested in our cells. In Na+ Ringer, dpHi/dt was increased, but no effect was detected in 0 Na+ Ringer in the presence of NPPB, indicating that in intact C11 cells the effect of blocking Cl- channels on dpHi/dt was not due to an adverse electrical gradient. The effect of 100 µM ATP was studied in 0 Na+ Ringer solution; this treatment caused a significant inhibition of dpHi/dt, reversed by 50 µM Bapta. We have shown that H+-ATPase present in MDCK C11 cells depends on Cl- ions and their channels, being regulated by cAMP and ATP, but not by the electrical gradient established by electrogenic H+ transport.
Resumo:
The objective of the present study was to investigate the effects of the direct addition of pentoxifylline (PF) to the ejaculates of men with poor sperm quality before freezing on post-thaw sperm motility, viability, acrosome integrity, and agonist-induced acrosome reaction. Semen specimens from 16 infertile men with impaired sperm count and motility (oligoasthenozoospermia) were divided into two equal aliquots: one received no treatment (control) while the other was incubated with 5 mM PF (treated). Both aliquots were cryopreserved by the liquid nitrogen vapor method. Motility was assessed according to WHO criteria. Acrosome integrity and spontaneous and calcium ionophore-induced acrosome reactions were assessed with fluorescein isothiocyanate-conjugated peanut agglutinin combined with a supra-vital dye (Hoechst-33258). Cryopreservation impaired sperm motility (percentage reduction: 87.4 (interquartile range, IQ: 70.3-92.9) vs 89.1 (IQ: 72.7-96.0%)), viability (25.9 (IQ: 22.2-29.7) vs 25.6 (IQ: 19.7-40.3%)) and acrosome integrity (18.9 (IQ: 5.4-38.9) vs 26.8 (IQ: 0.0-45.2%)) to the same extent in both treated and control aliquots. However, PF treatment before freezing improved the acrosome reaction to ionophore challenge test scores in cryopreserved spermatozoa (9.7 (IQ: 6.6-19.7) vs 4.8 (IQ: 0.5-6.8%); P = 0.002). These data show that pre-freeze treatment of poor quality human sperm with pentoxifylline did not improve post-thaw motility or viability nor did it prevent acrosomal loss during the freeze-thaw process. However, PF, as used, improved the ability of thawed spermatozoa to undergo the acrosome reaction in response to calcium ionophore. The present data indicate that treatment of poor quality human sperm with PF may enhance post-thaw sperm fertilizing ability.
Resumo:
Most breast cancer risk factors are associated with prolonged exposure of the mammary gland to high levels of estrogens. The actions of estrogens are predominantly mediated by two receptors, ERα and ERβ, which act as transcription factors binding with high affinity to estrogen response elements in the promoter region of target genes. However, most target genes do not contain the consensus estrogen response elements, but rather degenerated palindromic sequences showing one or more mutations and other ER-binding sites such as AP-1 and SP-1. Using the differential display reverse transcription-polymerase chain reaction technique, our group identified several genes differentially expressed in normal tissue and in ER-positive and ER-negative primary breast tumors. One of the genes shown to be down-regulated in breast tumors compared to normal breast tissue was the PHLDA1 (Pleckstrin homology-like domain, family A, member 1). In the present study, we investigated the potential of PHLDA1 to be regulated by estrogen via ER in MCF-7 breast cancer cells. The promoter region of PHLDA1 shows an imperfect palindrome, an AP-1- and three SP-1-binding sites potentially regulated by estrogens. We also assessed the effects of 17β-estradiol on PHLDA1 mRNA expression in MCF-7 breast cancer cells. MCF-7 cells exposed to 10 nM 17β-estradiol showed more than 2-fold increased expression of the PHLDA1 transcripts compared to control cells (P = 0.05). The anti-estrogen ICI 182,780 (1 µM) inhibited PHLDA1 mRNA expression and completely abolished the effect of 10 nM 17β-estradiol on PHLDA1 expression (P < 0.05), suggesting that PHLDA1 is regulated by estrogen via ER.
Resumo:
Vacuolar H+-ATPase is a large multi-subunit protein that mediates ATP-driven vectorial H+ transport across the membranes. It is widely distributed and present in virtually all eukaryotic cells in intracellular membranes or in the plasma membrane of specialized cells. In subcellular organelles, ATPase is responsible for the acidification of the vesicular interior, which requires an intraorganellar acidic pH to maintain optimal enzyme activity. Control of vacuolar H+-ATPase depends on the potential difference across the membrane in which the proton ATPase is inserted. Since the transport performed by H+-ATPase is electrogenic, translocation of H+-ions across the membranes by the pump creates a lumen-positive voltage in the absence of a neutralizing current, generating an electrochemical potential gradient that limits the activity of H+-ATPase. In many intracellular organelles and cell plasma membranes, this potential difference established by the ATPase gradient is normally dissipated by a parallel and passive Cl- movement, which provides an electric shunt compensating for the positive charge transferred by the pump. The underlying mechanisms for the differences in the requirement for chloride by different tissues have not yet been adequately identified, and there is still some controversy as to the molecular identity of the associated Cl--conducting proteins. Several candidates have been identified: the ClC family members, which may or may not mediate nCl-/H+ exchange, and the cystic fibrosis transmembrane conductance regulator. In this review, we discuss some tissues where the association between H+-ATPase and chloride channels has been demonstrated and plays a relevant physiologic role.
Resumo:
We have demonstrated that a synthetic DNA enzyme targeting early growth response factor-1 (Egr-1) can inhibit neointimal hyperplasia following vascular injury. However, the detailed mechanism of this inhibition is not known. Thus, the objective of the present study was to further investigate potential inhibitory mechanisms. Catalytic DNA (ED5) and scrambled control DNA enzyme (ED5SCR) were synthesized and transfected into primary cultures of rat vascular smooth muscle cells (VSMCs). VSMC proliferation and DNA synthesis were analyzed by the MTT method and BrdU staining, respectively. Egr-1, TGF-β1, p53, p21, Bax, and cyclin D1 expression was detected by RT-PCR and Western blot. Apoptosis and cell cycle assays were performed by FACS. Green fluorescence could be seen localized in the cytoplasm of 70.6 ± 1.52 and 72 ± 2.73% VSMCs 24 h after transfection of FITC-labeled ED5 and ED5SCR, respectively. We found that transfection with ED5 significantly inhibited cultured VSMC proliferation in vitro after 24, 48, and 72 h of serum stimulation, and also effectively decreased the uptake of BrdU by VSMC. ED5 specifically reduced serum-induced Egr-1 expression in VSMCs, further down-regulated the expression of cyclin D1 and TGF-β1, and arrested the cells at G0/G1, inhibiting entry into the S phase. FACS analysis indicated that there was no significant difference in the rate of apoptosis between ED5- and ED5SCR-transfected cells. Thus, ED5 can specifically inhibit Egr-1 expression, and probably inhibits VSMC proliferation by down-regulating the expressions of cyclin D1 and TGF-β1. However, ED5 has no effect on VSMC apoptosis.
Resumo:
Searching for effective Smad3 gene-based gene therapies for hepatic fibrosis, we constructed siRNA expression plasmids targeting the rat Smad3 gene and then delivered these plasmids into hepatic stellate cells (HSCs). The effect of siRNAs on the mRNA levels of Smad2, Smad3, Smad4, and collagens I-α1, III-α1 and IV-α1 (Colα1, Col3α1, Col4α1, respectively) was determined by RT-PCR. Eighty adult male Sprague-Dawley rats were randomly divided into three groups. Twice a week for 8 weeks, the untreated hepatic fibrosis model (N = 30) and the treated group (N = 20) were injected subcutaneously with 40% (v/v) carbon tetrachloride (CCl4)-olive oil (3 mL/kg), and the normal control group (N = 30) was injected with olive oil (3 mL/kg). In the 4th week, the treated rats were injected subcutaneously with liposome-encapsulated plasmids (150 µg/kg) into the right liver lobe under general anesthesia once every 2 weeks, and the untreated rats were injected with the same volume of buffer. At the end of the 6th and 8th weeks, liver tissue and sera were collected. Pathological changes were assessed by a semi-quantitative scoring system (SSS), and a radioimmunoassay was used to establish a serum liver fibrosis index (type III procollagen, type IV collagen, laminin, and hyaluronic acid). The mRNA expression levels of the above cited genes were reduced in the HSCs transfected with the siRNA expression plasmids. Moreover, in the treated group, fibrosis evaluated by the SSS was significantly reduced (P < 0.05) and the serum indices were greatly improved (P < 0.01). These results suggest that Smad3 siRNA expression plasmids have an anti-fibrotic effect.
Resumo:
Using cDNA microarray analysis, we previously identified a set of differentially expressed genes in primary breast tumors based on the status of estrogen and progesterone receptors. In the present study, we performed an integrated computer-assisted and manual search of potential estrogen response element (ERE) binding sites in the promoter region of these genes to characterize their potential to be regulated by estrogen receptors (ER). Publicly available databases were used to annotate the position of these genes in the genome and to extract a 5’flanking region 2 kb upstream to 2 kb downstream of the transcription start site for transcription binding site analysis. The search for EREs and other binding sites was performed using several publicly available programs. Overall, approximately 40% of the genes analyzed were potentially able to be regulated by estrogen via ER. In addition, 17% of these genes are located very close to other genes organized in a head-to-head orientation with less than 1.0 kb between their transcript units, sharing a bidirectional promoter, and could be classified as bidirectional gene pairs. Using quantitative real-time PCR, we further investigated the effects of 17β-estradiol and antiestrogens on the expression of the bidirectional gene pairs in MCF-7 breast cancer cells. Our results showed that some of these gene pairs, such as TXNDC9/EIF5B, GALNS/TRAPPC2L, and SERINC1/PKIB, are modulated by 17β-estradiol via ER in MCF-7 breast cancer cells. Here, we also characterize the promoter region of potential ER-regulated genes and provide new information on the transcriptional regulation of bidirectional gene pairs.
Resumo:
REGγ is a proteasome activator that facilitates the degradation of small peptides. Abnormally high expression of REGγ has been observed in thyroid carcinomas. The purpose of the present study was to explore the role of REGγ in poorly differentiated thyroid carcinoma (PDTC). For this purpose, small interfering RNA (siRNA) was introduced to down-regulate the level of REGγ in the PDTC cell line SW579. Down-regulation of REGγ at the mRNA and protein levels was confirmed by RT-PCR and Western blot analyses. FACS analysis revealed cell cycle arrest at the G1/S transition, the MTT assay showed inhibition of cell proliferation, and the Transwell assay showed restricted cell invasion. Furthermore, the expression of the p21 protein was increased, the expression of proliferating cell nuclear antigen (PCNA) protein decreased, and the expression of the p27 protein was unchanged as shown by Western blot analyses. REGγ plays a critical role in the cell cycle, proliferation and invasion of SW579 cells. The alteration of p21 and PCNA proteins related to the down-regulation of REGγ suggests that p21 and PCNA participate in the process of REGγ regulation of cell cycle progression and cell proliferation. Thus, targeting REGγ has a therapeutic potential in the management of PDTC patients.
Resumo:
We have described a case of a patient with an intriguing association of mucocutaneous leishmaniasis with lepromatous leprosy, two opposite polar forms of these spectral diseases. In the present follow-up study, we investigated the effect of the addition of Mycobacterium leprae antigens on interferon-gamma (IFN-γ) production in Leishmania antigen-stimulated cultures of peripheral blood mononuclear cells (PBMC) from this patient. For this purpose, PBMC cultures were stimulated with crude L. braziliensis and/or M. leprae whole-cell antigen extracts or with concanavalin A. In some experiments, neutralizing anti-human interleukin (IL)-10 antibodies were added to the cultures. IFN-γ and IL-10 levels in culture supernatants were measured by ELISA. During active leprosy, M. leprae antigens induced 72.3% suppression of the IFN-γ response to L. braziliensis antigen, and this suppression was abolished by IL-10 neutralization. Interestingly, the suppressive effect of M. leprae antigen was lost after the cure of leprosy and the disappearance of this effect was accompanied by exacerbation of mucosal leishmaniasis. Considered together, these results provide evidence that the concomitant lepromatous leprosy induced an IL-10-mediated regulatory response that controlled the immunopathology of mucosal leishmaniasis, demonstrating that, in the context of this coinfection, the specific immune response to one pathogen can influence the immune response to the other pathogen and the clinical course of the disease caused by it. Our findings may contribute to a better understanding of the Leishmania/M. leprae coinfection and of the immunopathogenesis of mucosal leishmaniasis.