83 resultados para Purification and Characterization
Resumo:
Ru-Sn/Al2O3 catalysts with different Sn loadings were prepared by the coimpregnation method. Several characterization techniques such as TPR, pyridine TPD and catalytic tests for dehydrogenation and hydrogenolysis were used to evaluate and compare such catalysts. TPR results indicate that Sn is deposited both onto the support and as species strongly interacting with Ru. Such non selective deposition modifies the acid and metallic functions of the catalysts. Both total acidity and acid strength distribution are affected: total acidity decreases and new sites of lower acid strength are created. Both dehydrogenating and hydrogenolytic activities are strongly diminished by the addition of Sn. Results of catalytic tests for methyl oleate hydrogenation indicate that methyl stearate is the main product, with only minute amounts of oleyl alcohol produced, and that the addition of Sn diminishes the hydrogenation activity.
Resumo:
Zeolite-encapsulated complexes have been widely applied in hydrocarbon oxidation catalysis. The "ship-in-a-bottle" encapsulation of iron(III) complexes containing piperazine and piperazine-derivative ligands in zeolite-Y is described. The flexible ligand methodology was employed and the efficiency and reproducibility of the procedure was investigated. The catalysts were characterized employing several techniques and the results indicate the presence of coordinated and uncoordinated iron(III) ions inside and outside the zeolitic cage.
Resumo:
The structure of the various asphaltenic subfractions found in crude oil was evaluated. For this purpose, C5 asphaltenes were extracted from an asphaltic residue using n-pentane as the flocculant solvent. The different subfractions were isolated from the C5 asphaltenes by the difference in solubility in different solvents. These were characterized by infrared spectroscopy, nuclear magnetic resonance, X-ray fluorescence, elementary analysis and mass spectrometry. The results confirmed that the subfractions extracted with higher alkanes had greater aromaticity and molar mass. However, small solubility variations between the subfractions were attributed mainly to the variation in the concentrations of cyclical hydrocarbon compounds and metals.
Resumo:
The influence of the composition and preparation method on the sol-gel transition temperature (Tsol-gel) and rheological response of poloxamer-based formulations was determined. Manual and more complex mechanical stirring were found to provide similar results. In addition, a linear dependence of Tsol-gel on the poloxamer content was observed in the range of concentrations analyzed, and a Poloxamer 407® concentration of 18% was selected. The addition of hyaluronic acid did not lead to significant changes in the Tsol-gel values. In contrast, the addition of microparticles caused a reduction in Tsol-gel without a significant reduction in gel strength, and pseudoplastic characteristics were observed, indicating that a thermoreversible gel was obtained with a rheology suitable for application in the treatment of burn wounds.
Resumo:
The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET) and polyvinylpyrrolidone (PVP) is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG) of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP), molecular weight cut-off (MWCO), and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.
Resumo:
This work aims to (1) produce and characterize the flour obtained from two varieties of canihua, cupi and illpa-inia, and (2) evaluate the ability of these flours to form biofilms. The flours produced contain proteins, starches, lipids, organic substances containing phenol groups, and high percentages of unsaturated fatty acids. Films produced from the illpa variety presented lower water vapor permeability and larger Young’s modulus values than the films formed from the cupi variety. Both films were yellowish and displayed a high light blocking ability (as compared with polyethylene films), which can be attributed to the presence of phenolic compounds. Furthermore, they showed lesser solubility and water permeability than other polysaccharide films, which may be the result of the higher protein (12%–13.8%) and lipid (11%) contents in canihua flours, as well as the formation of a larger number of S–S bonds. On the other hand, these films presented a single vitreous transition temperature at low temperatures (< 0 °C), crystallization of the A and Vh types, and an additional diffraction peak at 2 = 7.5º, ascribed to the presence of essential fatty acids in canihua flour. Canihua flour can form films with adequate properties and shows promise for potential applications in food packaging, because it acts as a good barrier to incident ultraviolet light.
Resumo:
This study aims to synthesize and characterize organoclays developed from an Argentinian montmorillonite (Bent) using hexadecyltrimethylammonium bromide (HDTMA-Br) as the intercalation agent. Subsequently, an adsorption mechanism is proposed. The obtained organoclays were more hydrophobic than the starting clay. Surfactant molecules were adsorbed initially through cation exchange in sites placed in the interlayer space of the clay. Adsorption in such sites continued until the interlayer space was saturated. Depending on the surfactant loading introduced during the intercalation process, different organizations of surfactant in the interlayer were obtained. Further adsorption of surfactant occurred in the mesopores generated by tactoids in the "house of cards" organization. This process kept surfactant molecules relatively free and out of the interlayer space.
Resumo:
The objectives of this work were to investigate the microstructure, crystallinity and thermal stability of nanofibrillated cellulose obtained from oat hulls using bleaching and acid hydrolysis at a mild temperature (45 ºC) followed by ultrasonication. The oat hulls were bleached with peracetic acid, and after bleaching, the compact structure around the cellulosic fibers was removed, and the bundles became individualized. The extraction time (30 or 60 min) did not affect the properties of the nanofibrillated cellulose, which presented a higher crystallinity index and thermal stability than the raw material (oat hulls). The nanocellulose formed interconnected webs of tiny fibers with diameters of 70-100 nm and lengths of several micrometers, producing nanofibers with a relatively high aspect ratio, thus indicating that these materials are suitable for polymer reinforcement.
Resumo:
Kevlar [poly (p-phenilylene terephtalamide)], was used as a precursor in the preparation of activated carbon fibers. For this intention, physical and chemical activations were carried out. Activated fibers were physically prepared from the carbonization of the Kevlar and its later activation with CO2 and steam of water, by the other hand; the chemically activated fibers were obtained by means of the impregnation of the material with phosphoric acid and their later carbonization. Different conditions were used and preliminary analyses of the precursor were taken into account (TGA-DTA / IR). The resulting fibers were characterized by N2 (77K) adsorption, infrared spectroscopy, SEM, and immersion calorimetry. Yields and Burn off were also evaluated. The results shows that if you want to synthesize activated carbon fibers from Kevlar strong conditions respect to the commonly used such as water steam, high phosphoric acid concentrations and methods of impregnation are the ones who allows the development of optimal surface areas and pore volumes.
Resumo:
The 2-methoxycinnamylidenepyruvic acid (2-MeO-HCP) was synthesized and characterized for nuclear magnetic resonance (¹H and 13C NMR), mass spectrometry (MS), Infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The application of DSC for purity determination is well documented in literature and is used in the analysis of pure organic compounds. The molecular geometry and vibrational frequencies of 2-MeO-HCP have been calculated.
Resumo:
Starch is the most important carbohydrate storage in plants. It is a raw material with diverse botanical origins, and is used by the food, paper, chemical, pharmaceutical, textile and other industries. In this work, native starches of Paraná pine seeds (pinhão) (Araucária angustiofolia, Bert O. Ktze) and european chestnut seeds (Castanea sativa, Mill) were studied by thermoanalytical techniques: thermo-gravimetry (TG), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), as well as X-ray powder patterns diffractometry. Apparent and total amylose content was also determined.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.
Resumo:
Hydrangea plants showing leaves with chlorotic and necrotic rings from Arujá Municipality, São Paulo State, were analyzed for the identification of the viral species. Elongated filamentous particles of 490 nm were visualized under transmission electron microscope. Oligonucleotides for Hydrangea ringspot virus (HdRSV), a potexvirus commonly found in Europe and in the United States, were tested using total RNA from hydrangea plants, amplifying two fragments, one around 550 and another one of 250 nucleotides. Nucleotide identity with HdRSV (accession number AJ 707100.1) was 96% and 88% for the longest and shortest fragment, respectively, indicating the presence of this virus. To evaluate its dissemination in the matrices of hydrangea used in the commercial production, 17 samples were collected in the region of Arujá, and eight were infected by HdRSV. For the analyzed viral replicase portion, the isolates from the varieties 'Azul LZR', 'Rosita', 'Renat Blue' and 'Vermelho Comum' did not differ in their amino acid sequences from isolates with sequences deposited in the GenBank (accession numbers AY 707100 and NC_006943). The isolates from 'Azul Rendado' and "Rosa Japonesa' showed few differences but were related to the remaining isolates. An antiserum was obtained for HdRSV and can be efficiently used to detect such virus in hydrangea and Primula malacoides, another ornamental plant also infected by HdRSV.
Resumo:
Myeloma cells Sp2/0-Ag14 and spleen cells from BALB/c mouse immunized with sonicated Campylobacter fetus subsp. venerealis NCTC 10354 were fused with polyethylene glycol (PEG) for the selection of clones producing antibodies. Clones were obtained by limiting dilution and screened for the production of specific antibodies to C. fetus subsp. venerealis NCTC 10354 by indirect ELISA and western blot against a panel of bacteria: C. fetus subsp. venerealis NCTC 10354, C. fetus subsp fetus ADRI 1812, C. sputorum biovar sputorum LMG 6647, C. lari NCTC 11352, and Arcobacter skirrowii LMG 6621 for the ELISA and C. fetus subsp. venerealis NCTC 10354 and C. sputorum biovar sputorum LMG 6647 for the western blotting. Fifteen clones producing monoclonal antibodies (MAbs) anti-C. fetus subsp. venerealis of the IgM (1) and IgG (14) classes were further screened for species-specificity. Four clones of the 15 obtained were producers of species-specific monoclonal antibodies (MAbs): two were specific for C. fetus subsp. venerealis and two were specific for C. fetus subsp. fetus. None of the clones were reactive against C. sputorum biovar sputorum LMG 6647. All clones recognized a protein with molecular mass of approximately 148 kDa from lysed C. fetus subsp. venerealis NCTC 10354.
Resumo:
Fibropapillomatosis (FP) is a benign tumoral disease that affects sea turtles, hampering movement, sight and feeding, ultimately leading to death. In Brazil, the disease was described for the first time in 1986. Research suggests the involvement of a herpesvirus in association with environmental and genetic factors as causal agents of FP. The objective of the present study was to detect and characterize this herpesvirus in sea turtles living in the coast of state Rio Grande do Sul (RS), Brazil. From October 2008 to July 2010, 14 turtles were observed between the beaches of Torres and Tavares, of which 11 were green turtles (Chelonia mydas) and 3 were loggerhead turtles (Caretta caretta). All turtles were young and mean curved carapace length was 37.71±7.82cm, and varied from 31 to 55cm. Only one green turtle presented a 1cm, papillary, pigmented fibropapilloma. Skin and fibropapilloma samples were analyzed by conventional and real time PCR assays to detect and quantify herpesvirus. All skin samples were negative, though the fibropapilloma specimen was positive in both tests. Viral load was 9,917.04 copies of viral genome per milligram of tissue. The DNA fragment amplified from the fibropapilloma sample was sequenced and allocated in the Atlantic phylogeographic group. This study reports the first molecular characterization of herpesvirus associated with fibropapilloma in turtles from the coast of RS.