75 resultados para Programs for improvement
Resumo:
The objective of this work was to assess root traits of 19 common bean genotypes, used in breeding programs for disease resistance. Genotypes DOR 364 and G 19833 were used as deep and shallow basal root checks, respectively. The number of whorls and basal roots were assessed on five-day old seedlings grown in germination paper. Growth pouch studies were conducted to evaluate basal root gravitropism and lateral root length from primary roots, in seven-day old seedlings. The following root gravitropic traits were estimated: basal growth angle, shallow basal root length (localized in the top 2 cm), and relative shallow basal root growth. Number of whorls varied from 1.47 to 3.07, and number of basal roots ranged from 5.67 (genotype TO) to 12.07 (cultivar Jalo MG-65). Cultivars BRS MG Talismã, Carioca, BRS Pioneiro, and Diamante Negro exhibited shallow basal roots, while genotypes Vi-10-2-1, TU, AB 136, and México 54 showed deep basal roots. Cultivar Jalo MG-65 showed more lateral roots from the primary root than the other genotypes. Genotypes used on common bean breeding programs for disease resistance have great variability on basal and primary root traits.
Resumo:
The objective of this work was to evaluate the population structure and the genetic and phenotypic progress of Nelore cattle in Northern Brazil. Pedigree information concerning animals born between 1942 and 2006 were analyzed. Population structure was performed using the Endog program. Out of the 140,628 animals studied, 67.7, 14.52 and 3.18% had complete pedigree record of the first, second and third parental generation, respectively. Inbreeding and average relatedness coefficients were low: 0.2 and 0.13%, respectively. However, these parameters may have been underestimated, since information on pedigree was incomplete. The effective number of founders was 370 and the genetic contribution of 10, 50 and 448 most influent ancestors explained 13.2, 28 and 50% of the genetic variability in the population, respectively. The genetic variability for growth traits and population structure demonstrates high probability of increasing productivity through selective breeding. Moreover, management strategies to reduce the currently observed age at first calving and generation intervals are important for Nelore cattle genetic improvement.
Resumo:
The objective of this work was to assess the productivity and polysaccharide-protein complex content of Agaricus blazei on rice straw medium, in comparison to conventional sawdust, using four casing soils. The A. blazei strain used was BCRC36814T, purchased from the Food Industry Research and Development Institute, Hsin-Chu, Taiwan. The two media were evaluated as to A. blazei productivity, harvesting time, and production costs. The experimental design used was a randomized complete block, with four replicates. Three local casing soils - Typic Paleudult (CCe), Typic Udorthent (Tq) and Oxyaquic Paleudult (TSp) - were compared to imported peat soil (PS, Saprists, Histosols), used as the control. The productivity of A. blazei using Tq and TSp soil was significantly higher. The TSp casing treatment resulted in earlier harvest by at least 14 to 27 days, when compared to the other treatments. The polysaccharide content in CCe (13.2%) and Tq soils (13.2%) did not differ significantly from the PS (13.4%) and TSp (10.6%) treatments. Local casing soils decreased the production costs of A. blazei cultivation. Composted rice straw can substitute sawdust as the culture medium for A. blazei production with increased yield.
Resumo:
The objective of this work was to evaluate the effects of alkaline solution marinades on the characteristics of pork subjected to post-mortem pH decrease in pig muscle. The pH of carcasses was measured in a commercial slaughterhouse (n = 526), 45 min after slaughtering (pH45) and, then, the carcasses were divided into the groups with pH45<5.7 or pH45>5.7. Ten samples of the longissimus dorsi muscles of each group were collected and distributed in an entirely randomized design, in a 2x4 factorial arrangement, with two conditions (pH45<5.7 or pH45>5.7), and four marinade solutions: TC, no marinade; TM1, sodium bicarbonate and sodium chloride; TM2, sodium tripolyphosphate and sodium chloride; TM3, sodium bicarbonate, sodium tripolyphosphate and sodium chloride. There was no interaction between pH45 of the meat and the marinade treatments. Meat with pH45<5.7 showed higher values for lightness, and for purge loss (PL), exudate loss (EL), cooking loss (CL) and shear force (SF). Marinating increased the pH, reduced the lightness, EL, CL and SF, and improved tenderness, juiciness and flavor of meat. Marinades with solutions containing chloride, bicarbonate, and sodium tripolyphosphate are effective in the improvement of pork quality, making physical characteristics of marinated meat similar to those of fresh pork, as a consequence of accelerated postmortem glycolysis.
Resumo:
Abstract:The objective of this work was to characterize the performance of elite wheat genotypes from different Brazilian breeding programs for traits associated with grain yield and preharvest sprouting. The study was conducted in 2010 and 2011 in the municipality of Capão do Leão, in the state of Rio Grande do Sul, Brazil, in a randomized complete block design with three replicates. Thirty-three wheat genotypes were evaluated for traits related to preharvest sprouting and grain yield. The estimate of genetic distance was used to predict potential combinations for selection of plants with high grain yield and tolerance to preharvest sprouting. The combined analysis of sprouted grains and falling number shows that the TBIO Alvorada, TBIO Mestre, Frontana, Fundacep Raízes, Fundacep Cristalino, and BRS Guamirim genotypes are tolerant to preharvest sprouting. Combinations of TBIO Alvorada and TBIO Mestre with Fundacep Cristalino show high potential for recovering superior genotypes for high grain yield and tolerance to preharvest sprouting.
Resumo:
Over the last 60 years, planting densities for apple have increased as improved management systems have been developed. Dwarfing rootstocks have been the key to the dramatic changes in tree size, spacing and early production. The Malling series of dwarfing rootstocks (M.9 and M.26) have been the most important dwarfing rootstocks in the world but are poorly adapted in some areas of the world and they are susceptible to the bacterial disease fire blight and the soil disease complex, apple replant disease which limits their uses in some areas. Rootstock breeding programs in several parts of the world are developing improved rootstocks with resistance to fire blight, and replant disease, and improved cold hardiness and yield efficiency. A second important trend has been the increasing importance of new cultivars. New cultivars have provided opportunities for higher prices until they are over-produced. A new trend is the "variety club" in which variety owners manage the production and marketing of a new unique cultivar to bring higher prices to the growers and variety owners. This has led to many fruit growers being unable to plant or grow some new cultivars. Important rootstock and cultivar genes have been mapped and can be used in marker assisted selection of future rootstock and cultivar selections. Other important improvements in apple culture include the development of pre-formed trees, the development of minimal pruning strategies and limb angle bending which have also contributed to the dramatic changes in early production in the 2nd-5th years after planting. Studies on light interception and distribution have led to improved tree forms with better fruit quality. Simple pruning strategies and labor positioning platform machines have resulted in partial mechanization of pruning which has reduced management costs. Improved plant growth regulators for thinning and the development of a thinning prediction model based on tree carbohydrate balance have improved the ability to produce the optimum fruit size and crop load. Other new plant growth regulators have also allowed control of shoot growth, control of preharvest fruit drop and control of fruit softening in storage after harvest. As we look to the future, there will be continued incremental improvement in our understanding of plant physiology that will lead to continued incremental improvements in orchard management but there is likely to be dramatic changes in orchard production systems through genomics research and genetic engineering. A greater understanding of the genetic control of dwarfing, precocity, rooting, vegetative growth, flowering, fruit growth and disease resistance which will lead to new varieties and rootstocks which are less expensive to grow and manage.
Resumo:
Although the citriculture is one of the most important economic activities in Brazil, it is based on a small number of varieties. This fact has contributed for the vulnerability of the culture regarding the phytosanitary problems. A higher number of varieties/genotypes with potential for commercial growing, either for the industry or fresh market, has been one of the main objectives of citrus breeding programs. The genetic breeding of citrus has improved, in the last decades, due to the possibility of an association between biotechnological tools and classical methods of breeding. The use of molecular markers for early selection of zygotic seedlings from controlled crosses resulted in the possibility of selection of a high number of new combination and, as a consequence, the establishment of a great number of hybrids in field experiments. The faster new tools are incorporated in the program, the faster is possibility to reach new genotypes that can be tested as a new variety. Good traits should be kept or incorporate, whereas bad traits have to be excluded or minimized in the new genotype. Scion and rootstock can not be considered separately, and graft compatibility, fruit quality and productivity are essential traits to be evaluated in the last stages of the program. The mapping of QTLs has favored breeding programs of several perennial species and in citrus it was possible to map several characteristics with qualitative and quantitative inheritance. The existence of linkage maps and QTLs already mapped, the development of EST and BAC library and the sequencing of the Citrus complete genome altogether make very demanding and urgent the exploration of such data to launch a wider genetic study of citrus. The rising of information on genome of several organisms has opened new approaches looking for integration between breeding, genetic and genome. Genome assisted selection (GAS) involves more than gene or complete genome sequencing and is becoming an import support in breeding programs of annual and perennial species. An huge information amount can be derivate from genome analysis. The use and benefit of such informations will depend on the genetic basis of the breeding program.
Resumo:
In this work, we describe a pedagogical experiment using work projects in chemistry undergraduate programs in general chemistry and inorganic chemistry courses making learning more dynamic and consolidating the link between students and the external community. We highlight as fundamental outcomes the improvement in the learning process and, above all, the active participation of the students in investigation and problem-solving activities.
Resumo:
For some years, Chemistry teachers have used scientific visualization software of molecular models in computing rooms and chemistry laboratories for educational purposes. However, its application in classrooms has been limited. This article describes the integration and use of computer programs for scientific molecular visualization in a traditional classroom. We consider that the improvement of technical aspects of their application and use (usability) has a direct effect on students' understanding of molecular structures (including students' extrinsic motivation), among other factors. Consequently, we developed a guide for the integration of hardware and software of molecular visualization for its use in the classroom.
Resumo:
Genistein:β-cyclodextrin complexes with high drug loading (19.22%) were prepared by freeze-drying and characterized by differential scanning calorimetry and hydrogen nuclear magnetic resonance spectroscopy. The spatial configuration of the complex was proposed by means of 2D-NOESY experiment combined with molecular modeling. According to the results obtained, the interaction of genistein with β -cyclodextrin in a 1:1 complex is supposed to occur mainly through the insertion of the guest A-ring in cyclodextrin cavity, without rule out the possibility of inclusion through the B-ring, as previously reported in the literature.
Resumo:
The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.
Resumo:
Comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry was used for the identification of forty doping agents. The improvement in the specificity was remarkable, allowing the resolution of analytes that could not be done by one-dimensional chromatographic systems. The sensitivity observed for different classes of prohibited substances was clearly below the value required by the World Anti-Doping Agency. In addition time-of-flight mass spectrometry gives full spectrum for all analytes without any interference from the matrix, resulting in selectivity improvements. These results could support the implementation of an exhaustive monitoring approach for hundreds of doping agents in a single injection.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
The feasibility of using augmented block designs and spatial analysis methods for early stage selection in eucalyptus breeding programs was tested. A total of 113 half-sib progenies of Eucalyptus urophylla and eight clones were evaluated in an 11 x 11 triple lattice experiment at two locations: Posto da Mata (Bahia, Brazil) and São Mateus (Minas Gerais, Brazil). Four checks were randomly allocated within each block. Plots consisted of 15 m long rows containing 6 plants spaced 3 m apart. The girth at breast height (cm/plant) was evaluated at 19 and 26 months of age. Variance analyses were performed according to the following methods: lattice design, randomized complete block design, augmented block design, Papadakis method, moving means method, and check plots. Comparisons among different methods were based on the magnitude of experimental errors and precision of the estimates of genetic and phenotypic parameters. General results indicated that augmented block design is useful to evaluate progenies and clones in early selection in eucalyptus breeding programs using moderate and low selection intensities. However, this design is not suitable for estimating genetic and phenotypic parameters due to its low precision. Check plots, nearest neighbour, Papadakis (1937), and moving means methods were efficient in removing the heterogeneity within blocks. These efficiencies were compared to that in lattice analysis for estimation of genetic and phenotypic parameters.
Resumo:
ABSTRACT The objectives of this study were to morphologically characterize fruits of the babassu palm tree (Attalea vitrivir) and to estimate their productivity in the north of Minas Gerais State, Brazil. Twenty mature fruits were collected from 10 plants in three different areas in Januária, Minas Gerais. Eighteen biometric parameters of the fruits were measured, the oil contents of the seeds was determined, the adherence to normal distribution was evaluated, distribution frequencies were evaluated and the effects of individuals and areas on the variables and the correlations between them were analyzed. The production of fruit bunches per plant and the number of fruits per bunch from 10 plants were quantified in three areas and the potential production under both natural harvesting and cultivation conditions were estimated. Significant differences were found among all of the biometric parameters examined between the different individuals and the different areas, which shows wide morphological variability in the fruits. The average oil content was 45.7%, but with significant differences among individuals. The observed variability favors the selection of productive individuals in genetic improvement programs. The potential productivity of endocarps and oil based on a density of 400/plants per hectare would be respectively 6.4 and 1.2 tons/ha, which indicates the possibility of using A. vitrivir for producing charcoal, bio fuels, and for carbon fixation.