50 resultados para Plasma materials
Resumo:
OBJECTIVETo present the nurse's integration within materials management of six teaching hospitals of Paraná - Brazil, and to describe the activities performed by nurses within this process.METHODA study of a qualitative approach and descriptive nature, conducted in teaching hospitals in Paraná, between June and August of 2013. The data collection was conducted through semi-structured interviews with eight nurses who worked in materials management; data were analyzed using content analysis.RESULTSThese showed that nurses perform ten categories of activities, distributed into four of the five steps of the materials management process.CONCLUSIONThe nurse, in performing of these activities, in addition to favoring the development of participative management, contributes to the organization, planning, and the standardization of the hospital supply process, giving greater credibility to the work with professionals who use the materials, and to the suppliers.
Resumo:
Para aumentar a precisão nas análises químicas de fertilidade do solo e dosar simultaneamente vários elementos, alguns laboratórios vêm optando pelo uso da técnica da espectrofotometria de emissão ótica em plasma induzido (ICP), em detrimento da técnica da espectrofotometria de absorção atômica (EAA), hoje comumente utilizada nos laboratórios de análise de solos. Este trabalho, além de comparar as duas técnicas de dosagem quanto à precisão, à reprodutibilidade e à magnitude dos teores dos micronutrientes Fe, Zn, Cu e Mn, extraídos por Mehlich-1, Mehlich-3 e DTPA-TEA, objetivou, também, selecionar os comprimentos de onda que apresentam menores interferências espectrais no ICP. Foram utilizadas 36 amostras (0 a 0,2 m) de solos coletadas nos Estados de Minas Gerais e Bahia, com ampla variação nos teores de micronutrientes, sendo selecionados três solos para definir os comprimentos de onda do ICP e avaliar a precisão e a reprodutibilidade dos métodos de dosagem. Os comprimentos de onda com menores interferências espectrais no ICP foram: 259,939 nm para Fe em Mehlich-1 e DTPA-TEA e 234,349 nm em Mehlich-3; 213,857 nm para Zn e 324,752 nm para Cu nos três extratores; e 259,372 nm para Mn em Mehlich-1 e DTPA-TEA e 260,568 nm em Mehlich-3. Tanto o ICP quanto o EAA foram precisos e reprodutíveis nas dosagens de Fe e Mn, sendo o ICP, em virtude do seu menor limite de detecção, mais preciso e reprodutível nas dosagens de Zn e Cu. Os métodos de dosagem diferiram estatisticamente (p < 0,01) pelo teste de identidade aplicado, para as dosagens de Fe, Zn, Cu e Mn, utilizando Mehlich-1, Mehlich-3 e DTPA-TEA, comprometendo assim a interpretação dos resultados gerados pelo ICP, com base nos níveis críticos gerados a partir do EAA.
Resumo:
Tests for bioaccessibility are useful in human health risk assessment. No research data with the objective of determining bioaccessible arsenic (As) in areas affected by gold mining and smelting activities have been published so far in Brazil. Samples were collected from four areas: a private natural land reserve of Cerrado; mine tailings; overburden; and refuse from gold smelting of a mining company in Paracatu, Minas Gerais. The total, bioaccessible and Mehlich-1-extractable As levels were determined. Based on the reproducibility and the accuracy/precision of the in vitro gastrointestinal (IVG) determination method of bioaccessible As in the reference material NIST 2710, it was concluded that this procedure is adequate to determine bioaccessible As in soil and tailing samples from gold mining areas in Brazil. All samples from the studied mining area contained low percentages of bioaccessible As.
Resumo:
Ethnopedological studies have mainly focused on agricultural land uses and associated practices. Nevertheless, peasant and indigenous populations use soil and land resources for a number of additional purposes, including pottery. In the present study, we describe and analyze folk knowledge related to the use of soils in non-industrial pottery making by peasant potters, in the municipality of Altinho, Pernambuco State, semiarid region at Brazil. Ethnoscientific techniques were used to record local knowledge, with an emphasis on describing the soil materials recognized by the potters, the properties they used to identify those soil materials, and the criteria employed by them to differentiate and relate such materials. The potters recognized three categories of soil materials: “terra” (earth), “barro” (clay) and, “piçarro” (soft rock). The multi-layered arrangement of these materials within the soil profiles was similar to the arrangement of the soil horizon described by formal pedologists. “Barro vermelho” (red clay) was considered by potters as the principal ceramic resource. The potters followed morphological and utilitarian criteria in distinguishing the different soil materials. Soils from all of these sites were sodium-affected Alfisols and correspond to Typic Albaqualf and Typic Natraqualf in the Soil Taxonomy (Soil Survey Staff, 2010).
Resumo:
In comparison with other micronutrients, the levels of nickel (Ni) available in soils and plant tissues are very low, making quantification very difficult. The objective of this paper is to present optimized determination methods of Ni availability in soils by extractants and total content in plant tissues for routine commercial laboratory analyses. Samples of natural and agricultural soils were processed and analyzed by Mehlich-1 extraction and by DTPA. To quantify Ni in the plant tissues, samples were digested with nitric acid in a closed system in a microwave oven. The measurement was performed by inductively coupled plasma/optical emission spectrometry (ICP-OES). There was a positive and significant correlation between the levels of available Ni in the soils subjected to Mehlich-1 and DTPA extraction, while for plant tissue samples the Ni levels recovered were high and similar to the reference materials. The availability of Ni in some of the natural soil and plant tissue samples were lower than the limits of quantification. Concentrations of this micronutrient were higher in the soil samples in which Ni had been applied. Nickel concentration differed in the plant parts analyzed, with highest levels in the grains of soybean. The grain, in comparison with the shoot and leaf concentrations, were better correlated with the soil available levels for both extractants. The methods described in this article were efficient in quantifying Ni and can be used for routine laboratory analysis of soils and plant tissues.