147 resultados para Physical quality of the soil
Resumo:
Cover crops are important for improving soil quality. However, soil properties usually have some spatial dependence. Thus, this study aimed to evaluate the effect of winter cover crops on physical properties of soil and soybean yields using thematic maps. Five winter treatments were used: black oats; intercropping 1 (forage turnips and black oats); intercropping 2 (forage turnips, black oats and common vetch); wheat; and control. Macroporosity, microporosity, total porosity, bulk density and water content of the soil from 0 - 0.1 m depths were evaluated after the winter cover crop management. Soybeans were sown over the entire area in the summer after the winter cover crop management, and the soybean yield was determined for each treatment. Maps for each treatment were created and compared to the control treatment using the relative deviation coefficient (RDC). The cover crops improved the total macroporosity of the soil in some regions of the study area. The black oats were more efficient at maintaining higher water content of the soil, and it can be used to decrease the bulk density.
Resumo:
The objective of this research was to test the addition of soymilk residue, also known as okara, to a molded sweet biscuit (MSB). The okara was provided by two soymilk producing companies whose production systems are based on hot disintegration of decorticated (company B) or non-decorticated (company A) soybeans and separation of the soymilk. Okaras A and B were dehydrated in a flash dryer and then ground to a flour (< 200 mesh). The okara flours showed high protein (35 g.100 g-1 dwb), lipid (17 g.100 g-1 dwb), and fiber (17 to 21 g.100 g-1 dwb) contents. The water holding capacity, protein solubility, emulsifying capacity, emulsion stability and isoflavone contents found in flour A were significantly higher (p < 0.05) than in flour B. The formulation of MSB, replacing 30% (w/w) of the wheat flour with okara flour was tested. The results of the physical measurements, brittleness and water activity of the MSB with flours A and B did not differ significantly (p < 0.05) from those of the standard. The color, flavor and overall quality of the MSB with 30% of okara flour B did not differ significantly from those of the standard biscuit, demonstrating its potential for application in confectionery products.
Resumo:
The objective of this study was to characterize and correlate maturity and quality of the first varieties of Brazilian seedless grapes 'BRS Clara', 'BRS Linda', 'BRS Morena', and 'Advanced Selection 8' compared with the American variety 'Crimson Seedless' in compliance with the Brazilian Normative/2002 and export standards Advanced Selection 8' is dark reddish, has large clusters, and is a very large ellipsoid berry; 'BRS Morena' is black with medium sized clusters and large berry shaped as ellipsoid to globoid; 'BRS Linda' is light green and has large sized clusters; 'Crimson' is pink and has small clusters with berries varying from medium to large sizes and ellipsoid shaped; and 'BRS Clara' is green yellowish has medium sized clusters and small berry of elongated ellipsoid shape. All varieties evaluated meet the standard for domestic market established as berry size minimum diameter 12 mm. 'BRS Clara' does not meet the export requirements of diameter. Berries of the red grapes 'BRS Morena' and 'Crimson Seedless' are firmer. The pH, titratable acidity, and soluble solids meet the official standards. Larger clusters are less acidic and present higher soluble solids/titratable acidity ratios implying that they are the sweetest type when ripe.
Resumo:
OBJECTIVE: To evaluate the sphygmomanometers calibration accuracy and the physical conditions of the cuff-bladder, bulb, pump, and valve. METHODS: Sixty hundred and forty five aneroid sphygmomanometers were evaluated, 521 used in private practice and 124 used in hospitals. Aneroid manometers were tested against a properly calibrated mercury manometer and were considered calibrated when the error was <=3mm Hg. The physical conditions of the cuffs-bladder, bulb, pump, and valve were also evaluated. RESULTS: Of the aneroid sphygmomanometers tested, 51% of those used in private practice and 56% of those used in hospitals were found to be not accurately calibrated. Of these, the magnitude of inaccuracy ranged from 4 to 8mm Hg in 70% and 51% of the devices, respectively. The problems found in the cuffs - bladders, bulbs, pumps, and valves of the private practice and hospital devices were bladder damage (34% vs. 21%, respectively), holes/leaks in the bulbs (22% vs. 4%, respectively), and rubber aging (15% vs. 12%, respectively). Of the devices tested, 72% revealed at least one problem interfering with blood pressure measurement accuracy. CONCLUSION: Most of the manometers evaluated, whether used in private practice or in hospitals, were found to be inaccurate and unreliable, and their use may jeopardize the diagnosis and treatment of arterial hypertension.
Resumo:
Volumetric soil water content (theta) can be evaluated in the field by direct or indirect methods. Among the direct, the gravimetric method is regarded as highly reliable and thus often preferred. Its main disadvantages are that sampling and laboratory procedures are labor intensive, and that the method is destructive, which makes resampling of a same point impossible. Recently, the time domain reflectometry (TDR) technique has become a widely used indirect, non-destructive method to evaluate theta. In this study, evaluations of the apparent dielectric number of soils (epsilon) and samplings for the gravimetrical determination of the volumetric soil water content (thetaGrav) were carried out at four sites of a Xanthic Ferralsol in Manaus - Brazil. With the obtained epsilon values, theta was estimated using empirical equations (thetaTDR), and compared with thetaGrav derived from disturbed and undisturbed samples. The main objective of this study was the comparison of thetaTDR estimates of horizontally as well as vertically inserted probes with the thetaGrav values determined by disturbed and undisturbed samples. Results showed that thetaTDR estimates of vertically inserted probes and the average of horizontally measured layers were only slightly and insignificantly different. However, significant differences were found between the thetaTDR estimates of different equations and between disturbed and undisturbed samples in the thetaGrav determinations. The use of the theoretical Knight et al. model, which permits an evaluation of the soil volume assessed by TDR probes, is also discussed. It was concluded that the TDR technique, when properly calibrated, permits in situ, nondestructive measurements of q in Xanthic Ferralsols of similar accuracy as the gravimetric method.
Resumo:
Knowledge on variations in vertical, horizontal and temporal characteristics of the soil chemical properties under eucalyptus stumps left in the soil is of fundamental importance for the management of subsequent crops. The objective of this work was to evaluate the effect of eucalyptus stumps (ES) left after cutting on the spatial variability of chemical characteristics in a dystrophic Yellow Argisol in the eastern coastal plain region of Brazil. For this purpose, ES left for 31 and 54 months were selected in two experimental areas with similar characteristics, to assess the decomposition effects of the stumps on soil chemical attributes. Soil samples were collected directly around these ES, and at distances of 30, 60, 90, 120 and 150 cm away from them, in the layers 0-10, 10-20 and 20-40 cm along the row of ES, which is in-between the rows of eucalyptus trees of a new plantation, grown at a spacing of 3 x 3 m. The soil was sampled in five replications in plots of 900 m² each and the samples analyzed for pH, available P and K (Mehlich-1), exchangeable Al, Ca and Mg, total organic carbon (TOC) and C content in humic substances (HS) and in the free light fraction. The pH values and P, K, Ca2+, Mg2+ and Al3+ contents varied between the soil layers with increasing distance from the 31 and 54-monthold stumps. The highest pH, P, K, Ca2+ and Mg2+ values and the lowest Al3+ content were found in the surface soil layer. The TOC of the various fractions of soil organic matter decreased with increasing distance from the 31 and 54-month-old ES in the 0-10 and 10-20 cm layers, indicating that the root (and stump) cycling and rhizodeposition contribute to maintain soil organic matter. The C contents of the free light fraction, of the HS and TOC fractions were higher in the topsoil layer under the ES left for 31 months due to the higher clay levels of this layer, than in those found under the 54-month-old stumps. However, highest C levels of the different fractions of soil organic matter in the topsoil layer reflect the deposition and maintenance of forest residues on the soil surface, mainly after forest harvest.
Resumo:
The removal of the litter layer in Portuguese pine forests would reduce fire hazard, but on the other hand this practice would influence the thermal regime of the soil, hence affecting soil biological activity, litter decomposition and nutrient dynamics. Temperature profiles of a sandy soil (Haplic Podzol) under a pine forest were measured with thermocouples at depths to 16 cm, with and without litter layer. The litter layer acted as a thermal insulator, reducing the amplitude of the periodic temperature variation in the mineral soil underneath and increasing damping depths, particularly at low soil water contents. At the mineral soil surface the reduction of amplitudes was about 2.5 ºC in the annual cycle and 5 to 6.7 ºC in the daily cycle, depending on the soil water content. When soil was both cold and wet, mean daily soil temperatures were higher (about 1 - 1.5 ºC) under the litter layer. Improved soil thermal conditions under the litter layer recommend its retention as a forest management practice to follow in general.
Resumo:
This study had the purpose of evaluating the effects of two management types of sugarcane: harvesting of burnt cane (BCH) and mechanized harvesting of unburnt green cane (MCH), on some soil physical properties of a dystrophic Rhodic Haplustox. The data were then compared with results for the same soil type under native forest. A completely randomized design was used, with three treatments and 20 replications. The following characteristics were determined: organic matter, aggregate stability, soil bulk density, and porosity at depths of 0-0.20 m and soil penetration resistance. After 15 years of cultivation, there were some alterations in the soil under cane burnt before harvesting, evidenced by a drop in the weighted average diameter of stable aggregates in water and increased soil bulk density. Significant changes were also detected in total porosity and pore distribution under both harvesting systems. Critical values for penetration resistance were observed in the area under mechanized sugar cane harvesting, with a value of 4.5 MPa in the 40-55 cm layer. This value is considered high and could indicate compaction and restriction of root growth. Soil properties under the green cane (unburned) management system were closest to those of the soil under native forest.
Resumo:
Studies on water retention and availability are scarce for subtropical or humid temperate climate regions of the southern hemisphere. The aims of this study were to evaluate the relations of the soil physical, chemical, and mineralogical properties with water retention and availability for the generation and validation of continuous point pedotransfer functions (PTFs) for soils of the State of Santa Catarina (SC) in the South of Brazil. Horizons of 44 profiles were sampled in areas under different cover crops and regions of SC, to determine: field capacity (FC, 10 kPa), permanent wilting point (PWP, 1,500 kPa), available water content (AW, by difference), saturated hydraulic conductivity, bulk density, aggregate stability, particle size distribution (seven classes), organic matter content, and particle density. Chemical and mineralogical properties were obtained from the literature. Spearman's rank correlation analysis and path analysis were used in the statistical analyses. The point PTFs for estimation of FC, PWP and AW were generated for the soil surface and subsurface through multiple regression analysis, followed by robust regression analysis, using two sets of predictive variables. Soils with finer texture and/or greater organic matter content retain more moisture, and organic matter is the property that mainly controls the water availability to plants in soil surface horizons. Path analysis was useful in understanding the relationships between soil properties for FC, PWP and AW. The predictive power of the generated PTFs to estimate FC and PWP was good for all horizons, while AW was best estimated by more complex models with better prediction for the surface horizons of soils in Santa Catarina.
Resumo:
Over the past three decades, pedotransfer functions (PTFs) have been widely used by soil scientists to estimate soils properties in temperate regions in response to the lack of soil data for these regions. Several authors indicated that little effort has been dedicated to the prediction of soil properties in the humid tropics, where the need for soil property information is of even greater priority. The aim of this paper is to provide an up-to-date repository of past and recently published articles as well as papers from proceedings of events dealing with water-retention PTFs for soils of the humid tropics. Of the 35 publications found in the literature on PTFs for prediction of water retention of soils of the humid tropics, 91 % of the PTFs are based on an empirical approach, and only 9 % are based on a semi-physical approach. Of the empirical PTFs, 97 % are continuous, and 3 % (one) is a class PTF; of the empirical PTFs, 97 % are based on multiple linear and polynomial regression of n th order techniques, and 3 % (one) is based on the k-Nearest Neighbor approach; 84 % of the continuous PTFs are point-based, and 16 % are parameter-based; 97 % of the continuous PTFs are equation-based PTFs, and 3 % (one) is based on pattern recognition. Additionally, it was found that 26 % of the tropical water-retention PTFs were developed for soils in Brazil, 26 % for soils in India, 11 % for soils in other countries in America, and 11 % for soils in other countries in Africa.
Resumo:
Soil properties have an enormous impact on economic and environmental aspects of agricultural production. Quantitative relationships between soil properties and the factors that influence their variability are the basis of digital soil mapping. The predictive models of soil properties evaluated in this work are statistical (multiple linear regression-MLR) and geostatistical (ordinary kriging and co-kriging). The study was conducted in the municipality of Bom Jardim, RJ, using a soil database with 208 sampling points. Predictive models were evaluated for sand, silt and clay fractions, pH in water and organic carbon at six depths according to the specifications of the consortium of digital soil mapping at the global level (GlobalSoilMap). Continuous covariates and categorical predictors were used and their contributions to the model assessed. Only the environmental covariates elevation, aspect, stream power index (SPI), soil wetness index (SWI), normalized difference vegetation index (NDVI), and b3/b2 band ratio were significantly correlated with soil properties. The predictive models had a mean coefficient of determination of 0.21. Best results were obtained with the geostatistical predictive models, where the highest coefficient of determination 0.43 was associated with sand properties between 60 to 100 cm deep. The use of a sparse data set of soil properties for digital mapping can explain only part of the spatial variation of these properties. The results may be related to the sampling density and the quantity and quality of the environmental covariates and predictive models used.
Resumo:
ABSTRACT The impact of intensive management practices on the sustainability of forest production depends on maintenance of soil fertility. The contribution of forest residues and nutrient cycling in this process is critical. A 16-year-old stand of Pinus taeda in a Cambissolo Húmico Alumínico léptico (Humic Endo-lithic Dystrudept) in the south of Brazil was studied. A total of 10 trees were sampled distributed in five diameter classes according to diameter at breast height. The biomass of the needles, twigs, bark, wood, and roots was measured for each tree. In addition to plant biomass, accumulated plant litter was sampled, and soil samples were taken at three increments based on sampling depth: 0.00-0.20, 0.20-0.40, 0.40-0.60, 0.60-1.00, 1.00-1.40, 1.40-1.80, and 1.80-1.90 m. The quantity and concentration of nutrients, as well as mineralogical characteristics, were determined for each soil sample. Three scenarios of harvesting intensities were simulated: wood removal (A), wood and bark removal (B), and wood + bark + canopy removal (C). The sum of all biomass components was 313 Mg ha-1.The stocks of nutrients in the trees decreased in the order N>Ca>K>S>Mg>P. The mineralogy of the Cambissolo Húmico Alumínico léptico showed the predominance of quartz sand and small traces of vermiculite in the silt fraction. Clay is the main fraction that contributes to soil weathering, due to the transformation of illite-vermiculite, releasing K. The depletion of nutrients from the soil biomass was in the order: P>S>N>K>Mg>Ca. Phosphorus and S were the most limiting in scenario A due to their low stock in the soil. In scenario B, the number of forest rotations was limited by N, K, and S. Scenario C showed the greatest reduction in productivity, allowing only two rotations before P limitation. It is therefore apparent that there may be a difference of up to 30 years in the capacity of the soil to support a scenario such as A, with a low nutrient removal, compared to scenario C, with a high nutrient removal. Hence, the effect of different harvesting intensities on nutrient availability may jeopardize the sustainability of P. taeda in the short-term.
Resumo:
ABSTRACT The removal of thick layers of soil under native scrubland (Cerrado) on the right bank of the Paraná River in Selvíria (State of Mato Grosso do Sul, Brazil) for construction of the Ilha Solteira Hydroelectric Power Plant caused environmental damage, affecting the revegetation process of the stripped soil. Over the years, various kinds of land use and management systems have been tried, and the aim of this study was to assess the effects of these attempts to restore the structural quality of the soil. The experiment was conducted considering five treatments and thirty replications. The following treatments were applied: stripped soil without anthropic intervention and total absence of plant cover; stripped soil treated with sewage sludge and planted to eucalyptus and grass a year ago; stripped soil developing natural secondary vegetation (capoeira) since 1969; pastureland since 1978, replacing the native vegetation; and soil under native vegetation (Cerrado). In the 0.00-0.20 m layer, the soil was chemically characterized for each experimental treatment. A 30-point sampling grid was used to assess soil porosity and bulk density, and to assess aggregate stability in terms of mean weight diameter (MWD) and geometric mean diameter (GMD). Aggregate stability was also determined using simulated rainfall. The results show that using sewage sludge incorporated with a rotary hoe improved the chemical fertility of the soil and produced more uniform soil pore size distribution. Leaving the land to develop secondary vegetation or turning it over to pastureland produced an intermediate level of structural soil quality, and these two treatments produced similar results. Stripped soil without anthropic intervention was of the lowest quality, with the lowest values for cation exchange capacity (CEC) and macroporosity, as well as the highest values of soil bulk density and percentage of aggregates with diameter size <0.50 mm, corroborated by its lower organic matter content. However, the percentage of larger aggregates was higher in the native vegetation treatment, which boosted MWD and GMD values. Therefore, assessment of some land use and management systems show that even decades after their implementation to mitigate the degenerative effects resulting from the installation of the Hydroelectric Plant, more efficient approaches are still required to recover the structural quality of the soil.
Resumo:
The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.
Resumo:
The study aimed to evaluate chemical, microbiological and hydro-physical changes of a Dystrophic Yellow Latosol, receiver of different levels of manipueira (cassava wastewater) application, in the cultivation of 'Terra Maranhão' banana. The experimental design was a randomized block with three replications in a factorial scheme 3 x 4, in which it was considered three soil depths and four levels of manipueira. It was evaluated the weighted mean diameter of the aggregate, the percentage of aggregation at different periods, soil density, particle density, porosity and soil saturated hydraulic conductivity, in addition to pH of P (mg dm -3), K (mg dm-3), Ca (cmolc dm-3), Mg (cmolc dm-3), Ca+Mg (cmolc dm-3), Al (cmolc dm-3), Na (cmolc dm -3), H+Al (cmolc dm-3), CEC (cmolc dm-3), V%, OM (g kg-1), soil microbial biomass (Ug Cg-1 dry soil), acid phosphatase (Ug PNP g-1 h-1). The use of manipueira influenced some physical characteristic of the soil, but it was not possible to specify the effect of increasing application dosage. Therefore, the application did not affect the biological indicators assessed in the soil or its pH. The use of manipueira as a fertilizer in the doses used in this study showed low increase of K, P, H+Al and Al in the soil and a good increase of Mg, Ca and Ca+Mg, Na, CEC and V%.