100 resultados para Particle-size
Comparação de duas metodologias de amostragem atmosférica com ferramenta estatística não paramétrica
Resumo:
In atmospheric aerosol sampling, it is inevitable that the air that carries particles is in motion, as a result of both externally driven wind and the sucking action of the sampler itself. High or low air flow sampling speeds may lead to significant particle size bias. The objective of this work is the validation of measurements enabling the comparison of species concentration from both air flow sampling techniques. The presence of several outliers and increase of residuals with concentration becomes obvious, requiring non-parametric methods, recommended for the handling of data which may not be normally distributed. This way, conversion factors are obtained for each of the various species under study using Kendall regression.
Resumo:
The present study consists in evaluating the NaX zeolite efficiency in removing Cu2+ from aqueous solutions, for future use of NaX in removing metals from wastewaters. The experiments were performed in batch systems (with shaking and continous stirring) and for different time intervals (1 to 24 h). Three particle sizes were employed: < 850 µm, 850 µm - 1 mm and 3 mm. It has been concluded that it is possible to employ the NaX zeolite for metal removal and the particle size plays an important role in the adsorption process. Specifically, NaX zeolites of smaller particle size achieved the maximum adsorption capacity of 152.36 mg of Cu2+/g of zeolite at pH = 4.5.
Resumo:
Methane, the main constituent of natural gas (> 85%), is employed in large scale as an energy source (thermoelectric power plants, automobiles, etc). However, significant quantities of this gas contribute to the greenhouse effect. The catalytic combustion of methane can minimize these emissions. Palladium is one of the metals that shows the highest activity, depending on the different active forms of the metal. In this article, we focus on the influence of particle size and pretreatment on the catalytic performance of palladium in the methane combustion reaction.
Resumo:
This work describes a systematic study for bovine liver sample preparation for Cd and Pb determination by solid sampling electrothermal atomic absorption spectrometry. Samples were prepared using different procedures: (1) drying in a household microwave oven followed by drying in a stove at 60 ºC until constant mass, and (2) freeze-drying. Ball and cryogenic mills were used for grinding. Particle size, sample size and micro sample homogeneity were investigated. All prepared samples showed good homogeneity (He < 10) even for low sample mass, but samples dried in a microwave oven/stove and ground in a ball mill presented the best homogeneity.
Resumo:
The effect of operational variables and their interaction in TPR profiles was studied using a fractional factorial experimental design. The heating rate and the reducing agent concentration were found to be the most important variables determining the resolution and sensitivity of the technique. They showed opposite effects. Therefore, they should be manipulated preferentially in order to obtain optimized TPR profiles. The effect of sample particle size was also investigated. The tests were carried out within a Cu/Zn/Al2O3 catalyst used for the water-gas shift reaction that presented two distinct species of Cu2+ in TPR profiles.
Resumo:
A comparison between silica by acid leaching of rice husk (RH) and silica obtained from thermal treatment of rice husk ash (RHA) is presented. The best leaching results were obtained using 10% hydrochloric acid followed by washing with water. The alternative method, calcination of RHA at 700 ºC for 6 h followed by grinding for 80 min, was more effective. Silica obtained from RH was about 97% amorphous, had a 17.37 µm mean particle size, and a specific surface area of 296 m²/g. On the other hand, for silica obtained from RHA the values were about 95% amorphous material 0.68 µm, and 81 m²/g.
Resumo:
Thermogravimetry was applied to investigate the effects of temperature and atmosphere on conversion of sulfur dioxide (SO2) absorbed by limestone. Ranges of temperature and particle size were studied, typical of fluidized-bed coal combustion. Isothermal experiments were performed at different temperatures (between 750 and 950 ºC) under local atmospheric pressure (~ 697 mmHg) in dynamic atmospheres of air and nitrogen. The maximum conversion was 29% higher in nitrogen atmosphere than in air atmosphere. The optimum conversion temperature was found at 831 ºC in air atmosphere and at 894 ºC in nitrogen atmosphere.
Resumo:
In this work, aqueous suspensions of aluminas with different particle sizes were evaluated. The effect of pH on the electrosteric stabilization using PMAA-NH4 (ammonium polymethacrylate) as deflocculant was studied. The amount of deflocculant was optimized and rheologic properties were determined at four different pH values. Sedimentation was also evaluated. For suspensions with pH 4, an electrostatic mechanism of stabilization was observed, probably due to a flat adsorption of PMMA- on the alumina surface, leading to a small efficiency in relation to steric stabilization. For a suspension with pH 12, the steric mechanism of stabilization prevails. Suspensions with pH 7 and 9 present a higher flocculation degree. In relation to particle size, A-1000 samples present a smaller particle size, leading to a smaller interparticle distance (IPS), making stabilization more difficult.
Resumo:
Titanium is an attractive material for structural and biomedical applications because of its excellent corrosion resistance, biocompatibility and high strength-to-weight ratio. The high reactivity of titanium in the liquid phase makes it difficult to produce it by fusion. Powder metallurgy has been shown to be an adequate technique to obtain titanium samples at low temperatures and solid-phase consolidation. The production of compacts with different porosities obtained by uniaxial pressing and vacuum sintering is briefly reviewed. Powder particle size control has been shown to be very important for porosity control. Sample characterization was made using scanning electron microscopy (SEM) images.
Resumo:
Green coconut shells were treated with acid, base and hydrogen peroxide solutions for 3, 6, 12 and 24 h for removing toxic metals from synthetic wastewater. The removal of ions by the adsorbent treated with 0.1 mol L-1 NaOH/ 3h was 99.5% for Pb2+ and 97.9% for Cu2+. The removal of Cd2+, Ni2+, Zn2+, using adsorbent treated with 1.0 mol L-1 NaOH/3 h, was 98.5, 90.3 and 95.4%, respectively. Particle size, adsorbent concentration and adsorption kinetics were also studied. An adsorbent size of 60-99 mesh and a concentration of 30-40 g/L for 5 min exposure were satisfactory for maximum uptake of Pb2+, Ni2+, Cd2+, Zn2+ and Cu2+ and can be considered as promising parameters for treatment the aqueous effluents contaminated with toxic metals.
Resumo:
Sulfur emission in coal power generation is a matter of great environmental concern and limestone sorbents are widely used for reducing such emissions. Thermogravimetry was applied to determine the effects of the type of limestone (calcite and dolomite), particle size (530 and 650 µm) and atmosphere (air and nitrogen) on the kinetics of SO2 sorption by limestone. Isothermal experiments were performed for different temperatures (650 to 950 ºC), at local atmospheric pressure. The apparent activation energies, as indicated by the slope of the Arrhenius plot, resulted between 3.03 and 4.45 kJ mol-1 for the calcite, and 11.24 kJ mol-1 for the dolomite.
Resumo:
This work describes novel materials based on pure iron oxide and iron oxide/niobia composite to produce a magnetic adsorbent. These materials were prepared with synthetic iron oxide and characterized by powder XRD, SEM, FTIR, TPR and Mössbauer spectroscopy. Results showed that the main iron oxides formed were goethite (aFeOOH) and maghemite (gFe2O3) with small particle size. The iron oxide and iron oxide/niobia composite showed high adsorption ability for organic compounds. The positive enthalpy indicated an endothermic adsorption process suggesting physical adsorption.
Resumo:
An analytical method has been developed and validated for the quantitation of lamivudine, zidovudine and nevirapine in the fixed-dose combination film-coated tablet by high performance liquid chromatography, in accordance with RE No. 899/2003, National Sanitary Surveillance Agency. It was based on an isocratic elution system with a potassium phosphate buffer pH 3.0: acetonitrile (60:40 v/v) mobile phase, C18, 250 x 46 mm column, 10µm particle size, λ 270 nm. The statistically evaluated results have shown that the method is specific, precise, accurate, and robust, ensuring the analytical safety of 3TC, AZT and NVP determination, which emerges as a new therapeutic alternative for antiretroviral treatment.
Resumo:
The synthesis of the ceramic pigment Victoria Green (Ca3Cr2Si3O12 ) is described. As raw materials CaCO3, Cr2O3, and SiO2 obtained from rice husk were used. Borax was used as mineralizer. Raw materials were formulated stoichiometrically and calcined from 1000 to 1200 ºC for 180 min. The main phase detected was uvarovite with particle size below 45 mm. The pigments were applied on ceramic tiles and sintered at 1150 ºC for 40 min. The synthesis process showed to be adequate to produce the green pigment, whose characteristics resemble those of a commercial pigment.
Resumo:
The aim of this work is to evaluate the use of natural zeolites to remove the NH4+ that remains in effluents from swine facilities which were submitted to physico-chemical and biological treatments. Experiments were made in batch made adding 5% (w/w) of adsorbent (0.6-1.3 and 3.0-8.0 mm) to synthetic and real swine facilities effluents. The results show that ammonium removal is influenced by adsorbent particle size and the presence of other ions in the effluent. The adsorption equilibrium was described by Langmuir as well as Freundlich isotherms and the kinetic data fitted well a pseudo-second order model.